
Bill Jenkins

Intel Programmable Solutions Group

2

Objectives

Describe high-level parallel computing concepts and challenges

Understand the advantages of using the acceleration stack with Intel® FPGAs

Write host software applications that can transparently access Intel ® FPGAs

Understand the design flows and options for creating workloads for the FPGA

Build and simulate accelerator workloads for the FPGA

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Agenda

Introduction and acceleration stack overview

Getting Started with the Acceleration Stack

Developing a SW host application

– Lab1

Introduction to Accelerator Functional Unit (AFU)

Creating an Accelerator Functional Unit (AFU)

Co-simulation using AFU Simulation Environment (ASE)

Compiling the Accelerator Function Unit into an Accelerator Function (AF)

Debugging an Accelerator Function

– Lab 2

Conclusion

– Lab 3

4

Better Computation Enables Innovation and Discovery

Astrophysics Manufacturing

Data Analytics Cyber SecurityFinancial

Genomics Artificial Intelligence

Weather & CLimate

50+ Years of Moore’s Law
Computing has Changed…

5

The Urgency of Parallel Computing

Source: http://www.cnn.com/2001/tech/ptech/02/07/hot.chips.idg/

If engineers keep building processors the way
we do now, CPUs will get even faster but
they’ll require so much power that they won’t
be usable.

—Patrick Gelsinger,
former Intel Chief Technology Officer,

February 7, 2001

6

7

Implications to High Performance Computing
50 GFLOPS/W

~100MW

2022

I/O I/O

Challenges Scaling Systems to Higher Performance

8

Memory

Result:
Slow
Performance
(high latency)

CPU Intensive

System

Result:
Excessive power

requirements

IO Intensive

Bottleneck

BottleneckBottleneck

Need to think about Compute Offload as well as Ingress/Egress Processing

Memory Intensive

Result: Slow Performance

Diverse Application Demands

9

10

The Intel Vision

Heterogeneous Systems:

▪ Span from CPU to GPU to FPGA to dedicated devices with
consistent programming models, languages, and tools

CPUs GPUs FPGAs ASSP

11

Heterogeneous Computing Systems

Modern systems contain more than one kind of processor

▪ Applications exhibit different behaviors:

– Control intensive (Searching, parsing, etc…)

– Data intensive (Image processing, data mining, etc…)

– Compute intensive (Iterative methods, financial modeling, etc…)

▪ Gain performance by using specialized capabilities of different types
of processors

12

Separation of Concerns

Two groups of developers:

▪ Domain experts concerned with getting a result

– Host application developers leverage optimized libraries

▪ Tuning experts concerned with performance

– Typical FPGA developers that create optimized libraries

Intel® Math Kernel Library a simple example of raising the level of abstraction to
the math operations

▪ Domain experts focus on formulating their problems

▪ Tuning experts focus on vectorization and parallelization

13

FPGA Enabled Performance and Agility

z

Workload N
Workload 2

Workload 1

Efficient Performance:
improve performance/watt

Workload Optimization:
ensure Xeon cores serve their
highest value processing

Real-Time: high bandwidth
connectivity and low-latency
parallel processing

Milliseconds

FPGAs enhance CPU-based processing by accelerating algorithms and minimizing bottlenecks

Developer Advantage: code
re-use across Intel FPGA data
center products

14

Using FPGAs Just Got Easier

FPGA IO InterfacesOS Driver

Low-Level FPGA Management

Gap: Creating Full-Stack Accelerated
Applications on FPGA is Difficult and

Time Consuming

Open Programmable
Acceleration Engine (OPAE) FPGA Interface Manager

(Standard I/O Interfaces)

Prebuilt and provided
for specific board

Provides standard C API to
standardized FPGA interface mangaer

Accelerator Function
(Loadable Workload)

Libraries

Software Frameworks

User Application User Design

Increase
Abstraction

Increase
User Base

Orchestration / Rack Management

Programmable Accelerator Card

Core Cache Interface

Ecosystem of FPGA
Workloads

Application & FPGA
Development

FPGA Deployment
& Management

Data Center Operator
Integrated Services Vendors

HW &
SW Developer

End Application
User

Enabled by

15

Loadable AF image(.gbs)

FPGA Platforms (Programmable Acceleration Cards)

Intel Xeon FPGA
Acceleration Libraries

Frameworks

Orchestration / Rack Level Management

FPGA Interface
Manager (FIM)

Intel® DAAL
Intel® MKL
Intel® MKL-DNN

Rack Scale Design

Hardware

Vertical Software
Frameworks/Libs
(DL, Networking,
Genomics, etc.)

Applications/
Orchestration

Intel® DL Deployment Toolkit

16

IP Libraries: DLA, GEMM, VirtIO, pHMM
Compression, Encryption, etc..

Open Programmable Acceleration Engine
(OPAE Software API)

Drivers, virtualization, API’s, acceleration engine
Intel FPGA SDK for OpenCL™, Intel Quartus® Prime

FPGA Images

User Applications Deep Learning, Networking, Genomics, etc.

Operating Systems OS Enablement: Linux, ESXi, Windows

FPGA HW & SW
Tool Chains

✓ Simplify FPGA
programming model

Common Infrastructure

Introducing the acceleration Stack for Intel® Xeon ® CPU with FPGA

17

Orchestrating FPGA-accelerated applications

End User
Developed IP

Static/Dynamic
FPGA Programming

Place
Workload

Storage Network

Orchestration Software (FPGA Enabled)

Intel
Developed IP

3rd -Party
Developed IP

Compute

Resource Pool

Software-Defined Infrastructure

Public and Private
Cloud Users

IP Repository

Launch Workload

Workload
Accelerators

Workload N
Workload 2

Workload 1

VM AF

components of acceleration Stack : Overview

18

Application

Drivers

Accelerator

Functional

Unit (AFU)

Signal Bridge and Management

Intel® Xeon®

Software

FPGA
Hardware

FPGA Interface Manager
Provided by Intel

User, Intel, or 3rd-Party IP
Plugs into AF Slot
(Tuning Expert)

PCIe* Drivers
Provided by Intel

Open Programmable
Acceleration Engine (OPAE)

Provided by Intel

Libraries

Developed by User
(Domain Expert)

User, Intel, and 3rd Party
(Tuning Expert)

FPGA Platforms (Programmable Acceleration Cards)

Qualified and Validated for
volume deployment
Provided by OEMs

Programmable Acceleration Card with Arria 10 FPGA
• Low-profile (half-length, half height) PCIe* slot card
• 168 mm × 56 mm
• Maximum component height: 14.47 mm
• PCIe × 16 mechanical

• Powered from PCIe+12V rail
• 70 W total board power
• 45 W FPGA power

• 2 – Banks of DDR4-2133 SDRAM, 4 GB each
• 64 bit data, 8 bit ECC
• Total 8 GB

• USB 2.0 port for
board firmware
update and FIM
image recovery

• Board Management Controller (BMC)
• Server class monitor system
• Accessed via USB or PCIe

• 128 MB Flash
• For storage of FPGA

configuration

• QSFP+ Slot
accepts
pluggable
optical modules

PCIe X 8 Gen3
connectivity to
Xeon host

19

Programmable Solutions Group 20

Current Capabilities of Arria 10 PAC

Dual SDRAM interfaces

▪ AFU exposed a two 512-bit interface operating at 267MHz offering ~34GB/s

Multiple FIM driven clocks

▪ Fixed 400/200/100 MHz frequencies

▪ Programmable user and user/2 frequencies (defined in .json file or at runtime)

Core Cache Interface providing host FPGA and FPGA host connectivity

▪ Includes five channels all operating at 400MHz

▪ Allows for 51GB/s peak bandwidth but PCIe will limit sustained throughput to ~6.4GB/s

components of acceleration Stack: OPEN Programmable ACCELERATION ENGINE

21

Simplifies the
use of FPGAs

Hardware

Application

Drivers

Software

Accelerator

Functional

Unit (AFU)

Signal Bridge and Management

Intel® Xeon®

FPGA

FPGA Interface Manager
Provided by Intel

PCIe* Drivers
Provided by Intel

Open Programmable
Acceleration Engine (OPAE)

Provided by Intel

Libraries

FPGA Platforms (Programmable Acceleration Cards)

User, Intel, or 3rd-Party IP
Plugs into AFU Slot

(Tuning Expert)

Developed by User
(Domain Expert)

User, Intel, and 3rd Party
(Tuning Expert)

22

OPAE: Simplified FPGA Programming Model for Application Developers

Bare Metal

FPGA Hardware + Interface Manager

FPGA Driver
(physical function – PF)

FPGA API (C) (enumeration, management, access)

Applications, Frameworks, Intel® Acceleration Libraries

Bare Metal OS Virtual Machine

FPGA Driver
(virtual function - VF)

OS, Hypervisor

FPGA Driver (common – AFU, local memory)

OS

Consistent API across product generations and platforms
▪ Abstraction for hardware specific FPGA resource details

Designed for minimal software overhead and latency
▪ Lightweight user-space library (libfpga)

Open ecosystem for industry and developer community
▪ License: FPGA API (BSD), FPGA driver (GPLv2)

FPGA driver being upstreamed into Linux kernel

Supports both virtual machines and bare metal platforms

Faster development and debugging of Accelerator Functions
with the included AFU Simulation Environment (ASE)

Includes guides, command-line utilities and sample code

Start developing for Intel FPGAs with OPAE today: http://01.org/OPAE

http://01.org/OPAE

23

What an FPGA Accelerator looks like to Application Software

From the OS’s point of view

▪ FPGA hardware appears as a regular PCIe device

▪ FPGA accelerator appears as a set of features accessible by
software programs running on host

Unified C API model

▪ Supports different kinds of FPGA integration and
deployment. (E.g: A single application can use the FPGA to
accelerate certain algorithms)

▪ Resource management and orchestration services in a data
center use to discover and select the FPGA resources and
organize them to be used by the workloads

User Application Software

Orchestration Services

Application Libraries

Operating System

Drivers

Hypervisor

Intel® Xeon®

OPAE

AFU
FPGA

24

Accessing FPGA Accelerators as PHYSICAL or Virtual Functions

Application Software

VMM/Hypervisor

AFU
Driver

AFU
Driver

DMA
Driver

AFC
Driver

FPGA
Region

FPGA API (C, C++, Python, etc.):
Enumeration, Management, Access

Application Software

accessing Accelerators as physical Functions
Architecture supports Single Root I/O Virtualization
(SROIV) PCIe extension enabling host software to
access the accelerator:

▪ Via a hypervisor/VMM (Virtual Function)

▪ Bypassing the VMM/Hypervisor Physical Functions

PCIe SR-IOV makes one physical device appear as
multiple virtual devices

▪ The physical device is referred to as Physical Function (PF)

▪ Fully featured PCIe functions can be discovered, managed, and
manipulated like any other PCIe device

▪ Creates Virtual Functions (VFs) which can be used to assign
individual accelerators to virtual machines

accessing Accelerators as virtual Functions

Programmable Solutions Group 25

FPGA Driver Architecture
FME: FPGA Management Engine Driver

– Static circuits for power/thermal management,
reconfiguration, debugging, error reporting, performance
counters, etc.

Port:

– Interface between the static (FIM) and the reconfigurable
Acceleration Functional Unit (AFU) region

– Controls communication from software to the accelerator

– Expose features such as reset and debug

– There may be multiple ports exposed through a VF

AFU: Accelerator Functional Unit Driver

– Exposes a 256KB region as control registers through Port

– Reconfigurable circuits for application specific functions

– User process can share memory buffers with AFU

Virtual FunctionPhysical Function

FME
Driver

AFU
Driver

Port

. . . .

OPAE Lib

Kernel Space

User Space

FPGA device driver

OPAE Lib

OPAE C API OPAE C API

AFU
Driver

Port

26

How HOST APPLICATIONS ENUMERATE the FPGA DEVICE: Sysfs

/sys/class/fpga/

Intel-fpga-dev.0

Intel-fpga-fme.0

socket_id

Perf

Iommu

Clock

CachePower

pr

Thermal_mgmt

Intel-fpga-port.0

Intel-fpga-dev.1

Intel-fpga-fme.1

Intel-fpga-port.1

Ex:

2 Intel(R) FPGA devices are installed in the host

Each FPGA device has one FME and one Port (AFU)

27

Programmable Solutions Group

Intel® HLS
Compiler

28

Software Application Development

HDL Programming OpenCL Programming

HDL

SW
Compiler

exe AFU
Image

Syn.
PAR

OPAE
Software FIM

CPU FPGA

AFApplicationAFU
Simulation

Environment
(ASE)

C

ASE
from Intel

OPAE
from Intel

Intel® Quartus
Prime Pro

Kernels

exe
AFU

Image

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software FIM

CPU FPGA

AFApplication

Host

Intel® FPGA SDK for OpenCL™

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group 29

The OPAE Library at a Glance

Enumerate, access, and manage FPGA
resources through API objects

A common interface across different FPGA
form factors

C API designed for extensibility

AFU Simulation Environment (ASE) allows
developing and debugging accelerator
functions and software applications without an
FPGA

Tools for partial reconfiguration, FPGA
hardware information, error reporting, etc.

Core Library
AFU Simulation

Environment
(ASE)

Tools
Documents

and Samples

Header files
(C API)

Runtime
Libraries

(*.so)

ASE Libraries
(*.so)

fpgaconf

fpgainfo

fpgad

fpgadiag

Programmable Solutions Group 30

Application Development with OPAE

User application
myapp.c

links against

includes OPAE C API

fpga.h

access.h

buffer.h

enum.h

event.h

utils.h

manage.h

mmio.h

properties.h

types.h

umsg.h

OPAE C library
(or, ASE OPEA C library)

implements

OPAE Intel FPGA driver
(or, RTL simulator)

interacts with

Programmable Solutions Group

Object model

31

The OPAE Library Programming Model

Discover /
search resource

Acquire
ownership of

resource

Map AFU
registers to user

space

Allocate / define
shared memory

space

Start / stop
computation on

AFU and wait
for result

Deallocate
shared memory

Relinquish
ownershipReconfigure

AFU

Properties
Object

Token
Object

Handle
Object

Unmap MMIO

Programmable Solutions Group 32

The OPAE Object Model

Properties
fpga_properties

Token
fpga_token

Handle
fpga_handle

describes a
resource

identifies a
resource

signifies
ownership

query information about a resource
enumerate resources based on criteria

acquire ownership of a resource

Programmable Solutions Group 33

fpga_properties Object

An opaque type for a properties object
used by application to query and search for
appropriate resources

2 Object types for FPGA resources

▪ FPGA_DEVICE

– Corresponds to physical FPGA device

– Can invoke management functions

▪ FPGA_ACCELERATOR

– Represents an instance of an AFU

Defined in types.h file

Property FPGA* Accelerator* Description

Parent No Yes fpga_token of the parent object

ObjectType Yes Yes
The type of the resourc e: either FPGA_DEVICE or
FPGA_ ACCELER ATOR

Bus Yes Yes The bus number

Device Yes Yes The PCI device number

Function Yes Yes The PCI functio n number

SocketId Yes Yes The socket ID

DeviceId Yes Yes The device ID

NumSlots Yes No
Number of AFU slots available on an
FPGA_DEVICE resource

BBSID Yes No
The FPGA Interface Manager (FIM) ID of an
FPGA_DEVICE resource

BBSVersion Yes No The FIM version of an FPGA_DEVICE resource

VendorId Yes No The vendor ID of an FPGA_DEVICE resource

Model Yes No The model of an FPGA_DEVICE resource

LocalMemory Size Yes No
The local memory size of an FPGA_DEVICE
resource

Capabilities Yes No The capabilities of an FPGA_DEVICE resource

GUID Yes Yes
The Global Unique Identifier of an FPGA_DEVICE
or FPGA_ACCELERATOR resource

NumMMIO No Yes
The number of MMIO space of an
FPGA_ACCELERATOR resource

NumInterrupts No Yes
The number of interrupts of an
FPGA_ACCELERATOR resource

Accelerator State No Yes
The state of an FPGA_ACCELERATOR resource:
either FPGA_ACCELERATOR_ASSIGNED or
FPGA_ACCELER ATOR_UNASSIGNED

*FPGA and Accelerator state whether or not the property is available for the FPGA or Accelerator objects

Programmable Solutions Group 34

Creating fpga_properties object

Initializes memory pointed at by prop to represent properties object

Populates with properties of the resource referred to by token

▪ Passing NULL token creates empty properties object which would match all FPGA resources in the
enumeration query

▪ Refine query criteria using fpgaPropertiesSet*() functions

Individual properties can be queried using fpgaPropertiesGet*() accessor functions

Destroy fpga_properties object using fpgaDestroyProperties() function

Located in properties.h file

fpga_result fpgaGetProperties(fpga_token token, fpga_properties *prop)

Error code

* Target property from fpga_properties object (i.e. fpgaSetObjectType()

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv210fpga_token
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv215fpga_properties

Programmable Solutions Group

Function that searches for FPGA resources in system that match criteria (may be more than one)

▪ All accelerators assigned to a host interface, all FPGAs of a specific type, etc.

Creates fpga_token objects and populates the array with these tokens

▪ Number of tokens in the returned tokens array, either max_tokens or num_matches whichever is smaller

Free the memory with tokens no longer needed using the fpgaDestroyToken() function

Located in enum.h file

35

Create an fpga_token
FPGA resource

to look for

Array of tokens to be populated

fpga_result fpgaEnumerate(const fpga_properties *filters, uint32_t num_filters, fpga_token *tokens,
uint32_t max_tokens, uint32_t *num_matches)

Error code

Number of

entries in array

Limit number of tokens

allocated/returned

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv215fpga_properties
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv210fpga_token

Programmable Solutions Group 36

Receive fpga_handle

Acquires ownership of FPGA resource referenced by token

Ownership required to interact with accelerator function

Remains open until fpga_Close() function called or process terminates

▪ Can also reset accelerator using fpga_Reset() function

Located in access.h file

fpga_result fpgaOpen(fpga_token token, fpga_handle *handle, int flags)

Error code
Allows resource to be opened multiple times

(FPGA_OPEN_SHARED)

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv210fpga_token
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_handle

Programmable Solutions Group

<empty>
objtype: FPGA_ACCELERATOR
guid: 0xabcdef

37

Enumeration and Discovery

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_properties prop;

fpga_token token;

fpga_guid myguid; /* 0xabcdef */

fpgaGetProperties(NULL, &prop);

fpgaPropertiesSetObjectType(prop, FPGA_ACCELERATOR);

fpgaPropertiesSetGUID(prop, myguid);

fpgaEnumerate(&prop, 1, &token, 1, &n);

fpgaDestroyProperties(&prop);

link
fpga_properties prop fpga_token token

<internal reference to accelerator
resource>

fpgaEnumerate()

Programmable Solutions Group

fpga_handle handle

<internal reference to accelerator
resource>

fpgaOpen()

38

Acquire and Release Accelerator Resource

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_token token;

// ... enumeration ...

fpga_handle handle;

fpgaOpen(token, &handle, 0);

.

.

.

fpgaClose(handle);

link
fpga_token token

<internal reference to accelerator
resource>

Programmable Solutions Group

SW application process
address space

(virtual)

39

Memory-Mapped I/O

FPGA_DEVICE

FPGA_ACCELERATOR

AF_ID: 0xabcdef

link

control register

control register

control register

TEXT

DATA

BSS

SW application

fpgaMapMMIO(…, &mmio_ptr)

control registercontrol register

control register

control register
fpgaReadMMIO()

fpgaWriteMMIO()

mmio_ptr

libopae-c

Programmable Solutions Group 40

Mapping MMIO Space

Provides access to control registers through memory mappable address spaces (MMIO spaces)

Returns mmio_ptr to specified MMIO space of target object in process virtual memory

▪ Setting to mmio_ptr to NULL implies access will be performed through fpgaReadMMIO*() and
fpgaWriteMMIO*()

– Only supported mode by AFU Simulation Environment (ASE)

▪ After mapping can access through direct pointer operations

Unmap with fpgaUnmapMMIO() function

Located in mmio.h file

fpga_result fpgaMapMMIO(fpga_handle handle, uint32_t mmio_num, uint64_t mmio_ptr)

Error code

Handle of previously opened
accelerator resource

Number of MMIO
space to access

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_handle

Programmable Solutions Group 41

MMIO Read/Write

Performs 64bit MMIO space write of value to specified byte offset

▪ Also supports 32 bit MMIO writes using fpgaWriteMMIO32() function

Reads use fpgaReadMMIO64() or fpgaReadMMIO32() functions

Located in mmio.h file

fpga_result fpgaWriteMMIO64(fpga_handle handle, uint32_t mmio_num, uint64_t offset, uint64_t value)

Error code

Handle of previously opened
accelerator resource

Number of MMIO
space to access

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_handle

Programmable Solutions Group 42

Shared Memory

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

DDR Memory

shared buffer
(“workspace”)

SW application

Physically contiguous!

physical address

virtual address

fpgaPrepareBuffer(…, len, …, 0); // Allocated by lib

fpgaPrepareBuffer(…, len, …, FPGA_BUF_PREALLOCATED); Pre-allocated

Available on Intel® Xeon®+FPGA
multi-chip packages with UPI
interface

Programmable Solutions Group 43

Sharing System Memory with an Accelerator

Prepares a memory buffer for shared access between accelerator and calling process

▪ Buffer can be pre-allocated or created dynamically

When finished with buffers release with fpgaReleaseBuffer() function

Located in buffer.h file

fpga_result fpgaPrepareBuffer(fpga_handle handle, uint64_t len, void **buf_addr, uint64_t *wsid, int flags)

Error code

Handle of previously opened
accelerator resource

Length of
buffer in Bytes

Virtual Address
of buffer

Handle to buffer to be
used with other functions

‘0’ or
FPGA_BUF_PREALLOCATED

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_handle

Programmable Solutions Group 44

Getting Base IO Address of Buffer

Used to acquire the physical base address for a shared buffer identified by the workspace ID

▪ IO Virtual Address (IOVA)

Located in buffer.h file

fpga_result fpgaGetIOAddress(fpga_handle handle, uint64_t wsid, uint64_t *ioaddr)

Error code

Handle of previously opened
accelerator resource

Buffer
Workspace ID

Pointer to memory where IO
Address will be returned

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_handle

Programmable Solutions Group 45

Shared Memory

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

fpga_handle handle; /* handle to accelerator */

void *buf_ptr;

uint64_t io_addr;

uint64_t wsid;

uint64_t length = 1 * 1024 * 1024; /* 1 MiB */

/* Allocate and share buffer */

fpgaPrepareBuffer(handle, length, &buf_ptr, &wsid, 0);

/* Get IO address to be used by accelerator (share via MMIO) */

fpgaGetIOAddress(handle, wsid, &io_addr);

/* ... */

/* Release and deallocate shared buffer */

fpgaReleaseBuffer(handle, wsid);

Programmable Solutions Group

fpga_handle handle; /* handle to accelerator */

void *buf_ptr;

uint64_t io_addr;

uint64_t wsid;

uint64_t length = 1 * 1024 * 1024; /* 1 MiB */

/* Pre-allocate buffer */

buf_ptr = allocate_your_own_buffer(length); /* must be physically

contiguous! */

fpgaPrepareBuffer(handle, length, &buf_ptr, &wsid,

FPGA_BUF_PREALLOCATED);

/* Get IO address to be used by accelerator (share via MMIO) */

fpgaGetIOAddress(handle, wsid, &io_addr);

/* ... */

/* Release and deallocate shared buffer */

fpgaReleaseBuffer(handle, wsid);

46

Shared Memory (Pre-allocated)

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

Programmable Solutions Group 47

Management and Reconfiguration

FPGA_DEVICE

FPGA_ACCELERATOR

AF_ID: 0xabcdef

link

Storage

GBS file
xyz.gbs

SW application
(with admin privilege)

FPGA_ACCELERATOR

AFU_ID: 0xbe11e5

fpgaReconfigureSlot(…, buf,

len, 0)

load

GBS metadata
interface_id

AFU_id

…

libopae-c

Partial configuration

Programmable Solutions Group 48

Management and Reconfiguration

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

fpga_handle handle; /* handle to device */

FILE *gbs_file;

void *gbs_ptr;

size_t gbs_size;

/* Read bitstream file */

gbs_ptr = malloc(gbs_size);

fread(gbs_ptr, 1, gbs_len, gbs_file);

/* Program GBS to FPGA */

fpgaReconfigureSlot(handle, 0, gbs_ptr, gbs_size, 0);

/* ... */

FPGA_ACCELERATOR

AFU_ID: 0xbe11e5

Programmable Solutions Group 49

A Code Example - Put Everything Together

“Loopback” is the default AFU on each port of an Intel® FPGA

– Copy memory content between host and FPGA

The hello_afu.c code in the $OPAE_PLATFORM_ROOT/hw/samples directory of the
OPAE library

– Demonstrates all OPAE API functions discussed in this presentation

– The same flow can be used to access and exercise any other AFUs

To compile source code run appropriate gcc/make commands

Compiling Host Application

50

Programmable Solutions Group 51

OPAE Tools

• A tool partial reconfiguration: take an acceleration configuration bitstreams and use it to overwrite a
reconfigurable region of for the FPGA

fpgaconf

• Several diagnostic tests, such as loopback, bandwidth, latency, etc

fpgadiag

• Shows the current status of FPGA hardware, such as power, temp, and errors

fpgainfo

• A daemon to monitor FPGA drivers’ error status; report errors as events to OPAE

fpgad

• Updates the static FIM image loaded from flash at power on

fpgaflash

Programmable Solutions Group 52

OpenCL Development Approach

OpenCL™ Programming

OpenCL
Kernels

exe AFU
Bitstream

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software FIM

CPU FPGA

AF (incl. OpenCL
Support Package)

Application

OpenCL
Host

Standard C/C++ Compiler linked with
▪ Intel® FPGA OpenCL Library
▪ OpenCL Support Package for Acceleration Stack

Library
▪ OPAE Library

Intel® FPGA Kernel Compiler (aoc)
▪ Compiles OpenCL kernel code
▪ Generates RTL
▪ Invokes Intel® Quartus Prime Design Software

FPGA Bitstream(<file>.aocx)
▪ Contains AF .gbs file
▪ And other OpenCL kernel related information

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group

CPU Accelerator

L
o

c
a

l M
e

m

G
lo

b
a

l M
e

m

L
o

c
a

l M
e

m
L

o
c
a

l M
e

m
L

o
c
a

l M
e

m

AcceleratorAcceleratorAcceleratorProcessor

Accelerator

L
o

c
a

l M
e

m

G
lo

b
a

l M
e

m

L
o

c
a

l M
e

m
L

o
c
a

l M
e

m
L

o
c
a

l M
e

m

AcceleratorAcceleratorAcceleratorProcessor

53

OpenCL™ Programming Model: Host + Accelerators

Host Accelerator

L
o

c
a

l M
e

m

G
lo

b
a

l M
e

m

L
o

c
a

l M
e

m
L

o
c
a

l M
e

m
L

o
c
a

l M
e

m

AcceleratorAcceleratorAccelerator
Compute

Units
__kernel void
sum(__global float *a,

__global float *b,
__global float *y)

{
int gid = get_global_id(0);
y[gid] = a[gid] + b[gid];

}

main() {
read_data_from_file(…);
manipulate_data(…);

clEnqueueWriteBuffer(…);
clEnqueueNDRange(…,sum,…);
clEnqueueReadBuffer(…);

display_result(…);
}

Functions to be accelerated (kernels) offloaded
onto accelerator devices (FPGAs, GPUs, etc)

Host program on CPU

OpenCL on Intel® FPGAs landing page

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

Programmable Solutions Group 54

Software Application Flow using OpenCL™

No different from traditional OpenCL™ flow

▪ C based development and optimization flow to create AFUs and Host Application

▪ Standard OpenCL™ FPGA application using the Intel® FPGA SDK for OpenCL

– FPGA OpenCL™ debug and profiling tools supported

▪ More information on using OpenCL with FPGAs

The Acceleration Stack abstracted away from user

▪ OPAE part of the Host Run-Time

– Host does not need to interact with OPAE SW directly

▪ OpenCL™ Support Package(OSP) part of the FPGA Interface Manager

– Kernel Avalon interface translated to CCI-P by the OSP

To learn more about using OpenCL with FPGAs, visit Intel FPGA Customer Training page

http://www.altera.com/opencl
https://www.altera.com/support/training/catalog.html?keywords=opencl

Programmable Solutions Group

FPGA Interface Manager
(BBS)

AFU (GBS)

OpenCL

Host

OpenCL
Support
Package

HW

55

OpenCL™ Adds HW and SW Abstraction

CPU

FPGA

FPGA

Interface

Unit

OpenCL

Kernel
OpenCL

Kernel
OpenCL

KernelOPAE

OSP MMD

OpenCL

Runtime

PCIe*

DDR

External Memory

Interface

DDR

External Memory

Interface

CCI-P

Software
Stack

Programmable Solutions Group

Software Stack and the OpenCL™ MMD Layer

Memory-Mapped Device (MMD) SW connects board driver to OpenCL runtime

▪ For the Acceleration Stack it links the OpenCL API to OPAE

Uses DMA BBB software driver unmodified and runs it in a separate thread.

OpenCL Host Application

OPAE Driver (Kernel Space)

OPAE Library

OpenCL MMD Layer for Intel® PAC

OpenCL Runtime Library from Intel®

CPU and FPGA Hardware

OPAE Calls: fpgaOpen, fpgaClose, fpgaReadMMIO, fpgaWriteMMIO

MMD Layer Calls: aocl_mmd_open/close, aocl_mmd_read/write

OpenCL Calls: clEnqueueWriteBuffer, clEnqueueReadBuffer, clEnqueueNDRangeKernel

Programmable Solutions Group 57

OpenCL™ with Acceleration Stack Features

Standard OpenCL FPGA application can be used as is for the Acceleration Stack

▪ No code changes necessary, just switch the OSP in the compilation environment

– Acceleration Stack functionality built into the OpenCL Support Package

Easily leverage the capabilities of the Acceleration Stack

▪ Allow OpenCL to be used with virtualization

▪ No need develop RTL conforming to CCI-P interface

▪ No need to code at the lower OPAE level

Switch between OpenCL and Non-OpenCL Acceleration Stack applications without
rebooting

▪ FPGA Interface Manager for both are the same

Programmable Solutions Group 58

OpenCL Usage Software Requirements

Intel® FPGA Runtime Environment for OpenCL™

▪ Download and install from Intel® FPGA Download Center

▪ For kernel development and compilation, the Intel® FPGA SDK for OpenCL
and Intel® Quartus software is required

Acceleration Stack for the Intel® PAC

▪ Follow the Intel® Acceleration Stack Quick Start Guide for Intel® PAC

▪ Install OpenCL™ Support Package for the Intel® PAC

– Part of the Acceleration Stack files

OpenCL™ on Intel Programmable Acceleration Card with
Intel® Arria 10 GX FPGA Quick Start User Guide

http://dl.altera.com/opencl/
https://www.altera.com/documentation/dnv1485190478614.html
https://www.altera.com/documentation/qac1504285387466.html

59

components of acceleration Stack: FPGA INTERFACE MANAGER (FIM) + AFU

60

Simplifies the
use of FPGAs

Hardware

Application

Drivers

Software

Accelerator

Functional

Unit (AFU)

Signal Bridge and Management

Intel® Xeon®

FPGA

FPGA Interface Manager
Provided by Intel

PCIe* Drivers
Provided by Intel

Open Programmable
Acceleration Engine (OPAE)

Provided by Intel

Libraries

Developed by User

FPGA Platforms (Programmable Acceleration Cards)

User, Intel, or 3rd-Party IP
Plugs into AF Slot
(Tuning Expert)

Developed by User
(Domain Expert)

User, Intel, and 3rd Party
(Tuning Expert)

Programmable Solutions Group 61

Where to Get AFUs?

Accelerator
Functional Unit

(AFU)

Self-Developed Externally-Sourced

VHDL or Verilog
C/C++ Programming

Language Ecosystem Partner

Performance OptimizedHigher Productivity Contracted EngagementIntel® Reference Designs

Intel® HLS Compiler

Intel® FPGA SDK for

OpenCL™

Programmable Solutions Group 62

Growing List of Accelerator Solution Partners

Genomics Sequencing : accelerating Performance

50X
PairHMM Algorithm

Speedup 1

1.2X
Overall pipeline

Speedup 1

1. Test configuration: Intel® Xeon® processor E5-2699 v4 at 2.20 GHz, 2 sockets, 22 cores/socket, 256 GB RAM, 2 TB Intel SSD DC P3700, Intel Arria® 10 GX Development Kit compared to Intel Xeon
processor E5-2699 v4 at 2.20 GHz with Intel® Advanced Vector Extensions (AVX), 2 sockets, 22 cores/socket, 256 GB RAM, 2 TB Intel SSD DC P3700.

Solving Real-World Problems: database acceleration

Traditional Data
Warehousing 2

2X+ 3X+ 10X+
FASTER REAL-TIME
DATA ANALYTICS 1

Storage
compression 3

1. Based on database queries run with SWARM64 acceleration vs. no acceleration. Testing performed by Swarm64. See System Configurations page for more details.
2. Data warehousing tested with queries and data taken from TPC-DS benchmark. Testing performed by Swarm64. See System Configurations for more details.
3. Based on database size run with SWARM64 acceleration vs. no acceleration. Testing performed by Swarm64. See System Configurations page for more details.
4. Projected Total Cost of Ownership savings for Swarm64DB over PostgreSQL database over a 3 year period. Swarm64 estimate. See System Configurations page for more details.

>40%
TCO Savings4

13

Key Value Store: Accelerating Throughput

44x 21X 13X
lower latency† Lower power†

Throughput
improvement†

† solutions compared were implementations of the same KVS protocol running in software in Linux on the same Intel i7 processor on the same machine and another running also in software but with the DPDK

kernel bypass library. Details about the test appear in the whitepaper http://algo-logic.com/KVS-whitepaper . See system configuration slide for more detail on configuration and testing methodology。

Key Value Store (KVS) associates values
with keys
Algo-Logic’s FPGA-accelerated KVS
solution performs lookups with the lowest
latency, highest throughput, and less
processing energy than equivalent
software*

₋ Ultra low latency (sub microsecond
network read delay)

₋ Deterministic (Near-zero jitter)
₋ High Throughput (170M IOPs)
₋ Sub µ-Joule/lookup energy

consumption

Software Controller API Options
₋ KVS client API compatible with C/C++,

Java, Python, and other programming
languages

http://algo-logic.com/KVS-whitepaper

Image Processing: Accelerating Performance

4.9x
Faster JPEG to

WebP 1

1oX
lower power

than GPU3

5X
lower

latency2

† Compared to E5-2630 v2 CPU, JPEG to WEBP. See System Configuration Slide for more details

Customer Application: Big Data Applications running on
Spark/Kafka Platforms

Current solution: Run Spark/SQL on a cluster of CPUs

Challenge: For many applications in the
FinServ/Genomics/Intelligence Agencies/etc. Spark
performance does not meet customers SLA
requirements, especially for delay sensitive streaming
workloads

Solution
Value

Proposition

Customer Application: Risk Management
acceleration framework (financial back-testing)

Current solution: Deploy a cluster of CPUs or
GPUs with complex data access

Challenge: Traditional risk management
methods are compute intensive, time
consuming applications - > 10+ hours for
financial back-testing

Solution
Value

Proposition

Programmable Solutions Group 70

Intel® FPGA Deep Learning Acceleration Suite

▪ CNN acceleration engine for common
topologies executed in a graph loop
architecture

– AlexNet, GoogleNet, LeNet, SqueezeNet,
VGG16, ResNet, Yolo, SSD, LSTM…

▪ Software Deployment

– No FPGA compile required

– Run-time reconfigurable

▪ Customized Hardware Development

– Custom architecture creation w/ parameters

– Custom primitives using OpenCL™ flow

Convolution PE
Array

Crossbar

prim prim prim custom

D
D

R

Memory
Reader
/Writer

Feature Map Cache

D
D

R

Config
Engine

Programmable Solutions Group 71

Open Visual Inference & Neural network Optimization

(OpenVINO™) toolkit

Cross-platform approach
to deep learning inference

Model Optimizer
Convert & optimize

trained models

Optimized
functions for

Intel® Processors

Create own customer
kernels or use a library

of functions

Runtimes, emulator,
kernels, workload samples

Enhanced, graphical
development using

Vision Algorithm Designer

Deep Learning Deployment Toolkit OpenCV*

IPU

Inference Engine
Run optimized

inferences

Optimized Libraries
& OpenVX*

Deep Learning Tools from Intel

Deep Learning Frameworks

GPU CPU GPU CPUGPU CPUFPGA

OpenCL™ Driver for Intel® Architecture

Hardware Support

OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Programmable Solutions Group

DLA SW API

Intel® FPGA DLA Suite Usage

GoogleNet Optimized Template

ResNet Optimized Template

Additional, Generic CNN Templates

SqueezeNet Optimized Template

VGG Optimized Template

• Supports common software frameworks (Caffe, Tensorflow)

• Intel DL software stack provides graph optimizations

• Intel FPGA Deep Learning Acceleration Suite provides turn-
key or customized CNN acceleration for common topologies

Caffe TensorFlow

Intel®

Xeon®

Processor

Intel ®

FPGA

Inference
Engine

Model
Optimizer

Conv
PE Array

Crossbar

DDR

Memory
Reader
/Writer

Feature Map Cache

DDR

DDR

DDR

Config
Engine

Optimized Acceleration Engine

Standard ML Frameworks

Intel Deep Learning
Deployment Toolkit

Heterogenous
CPU/FPGA
Deployment

Pre-compiled Graph Architectures

Hardware Customization Supported

Programmable Solutions Group 73

Machine Learning on Intel® FPGA Platform

Acceleration Stack Platform Solution

DLA Runtime Engine DLA Workload

OpenCL™ Runtime
BBS

Hardware

Platform & IP

Software Stack

DL Deployment Toolkit

Acceleration Stack

Application

PAC Family

Boards

Intel® Xeon

CPU

ML Framework (Caffe*,

TensorFlow*)

74

Programmable Solutions Group 75

FPGA Components (Acceleration Stack v1.1)

FPGA

Accelerator

Functional Unit (AFU)

DDR4

PCIe*

Partial
Reconfiguration
(PR) Region

FPGA
Interface

Unit
(FIU)

Core Cache
Interface

(CCI)

• Could be other interfaces in the future (e.g. UPI)
• ** Available in v1.1 of Acceleration Stack

QSFP+ 10Gb/40Gb

High Speed
Serial

Interface**

(HSSI)

DDR4
Local

Memory
Interfaces

EMIF

EMIF

FPGA INTERFACE MANAGER (FIM): Under the hood

76

FPGA

FPGA INTERFACE UNIT (FIU)

FPGA INTERFACE MANAGER (FIM)
PCIe Gen 3x8 Hard IP Controller

CCI-P (512-bit Bidirectional Data Path)

ACCELERATOR FUNCTIONAL
UNIT SLOT

(Partial Reconfiguration region)

Standard framework and abstraction layer for AFU integration with Acceleration Stack

AV
MM

Slave

SDRAM Bank 0
Interface

267 MHz

512-Bit

DIMM
0AV MM

Master

1067 MHz

64-Bit
ECC

AV
MM

Slave

SDRAM Bank 1
Interface

267 MHz

512-Bit

DIMM
1

AV MM
Master

1067 MHz

64-Bit
ECC

FPGA Manager
Engine (FME)

HSSI PHY
(PCS/PMA)

MAC IP
40Gb x1 or

10Gb x4

QSFP
+

Resources Available:
ALMs: 92%
M20KBlocks: 94%
DSP Blocks: 100%

FPGA INTERFACE Unit: The logic that enables the Acceleration Stack

77

FIU provides handling of protocol errors

▪ Bus timeouts, signaling violation, buffer overruns, etc…

FIU implements bus scheduling and synchronization

▪ FPGA write synchronization handled within FIU to
ensure predictable ordering of writes to host memory

Programmable Accelerator Card with Arria 10 GX FPGA Host Interface Bandwidth (PCIe gen3 x8)

▪ Read from host memory: 6.911GB/sec

▪ Write to host memory: 6.955GB/sec

▪ Simultaneous read/write: 6.160GB/sec read, 6.263GB/sec write

PCIe Gen 3x8 Hard IP Controller

CCI-P (512-bit Bidirectional Data Path)

FPGA INTERFACE UNIT (FIU)

Programmable Solutions Group 78

How to program the FIM into the flash?

fpgaflash through PCIe

$ sudo fpgaflash user $OPAE_PLATFORM_ROOT/hw/blue_bits/*.rpd 04:00.0

Quartus Prime Programmer through JTAG

▪ Intel FPGA Download Cable is required

$QUARTUS_HOME/bin/quartus_pgm -m JTAG -o 'pvbi;dcp_1_1.jic’

Programmable Solutions Group 79

How to find the version of FIM loaded?

$ sudo fpgainfo fme
[sudo] password for amrutha:
//****** FME ******//
Class Path: /sys/class/fpga/intel-fpga-dev.0/intel-fpga-fme.0
Device Path: /sys/devices/pci0000:00/0000:00:03.0/0000:04:00.0/fpga/intel-fpga-dev.0/intel-fpga-fme.0
Bus: 0x04
Device: 0x00
Function: 0x00
Device Id: 0x09C4
FIM Version: 1.1.3
Ports Num: 1
Socket Id: 0
Bitstream Id: 0x113000200000177
Bitstream Metadata: 0x18043013
Pr Interface Id: 9926ab6d-6c92-5a68-aabc-a7d84c545738
Object Id: 251658240 (FPGA DEVICE)

Programmable Solutions Group 80

How to find the version of AFU loaded?

$ sudo fpgainfo port
//****** PORT ******//
Class Path : /sys/class/fpga/intel-fpga-dev.0/intel-fpga-port.0
Device Path : /sys/devices/pci0000:00/0000:00:03.0/0000:04:00.0/fpga/intel-fpga-
dev.0/intel-fpga-port.0
Bus : 0x04
Device : 0x00
Function : 0x00
AFU Id : 850adcc2-6ceb-4b22-9722-d43375b61c66
Object Id : 0xf400000 FPGA_ACCELERATOR

Programmable Solutions Group 81

How Can FPGA Accelerators Be Created?

Accelerator
Functional Unit

(AFU)

Self-Developed Externally-Sourced

VHDL or Verilog
C/C++ Programming

Language Ecosystem Partner

Performance OptimizedHigher Productivity Contracted EngagementIntel® Reference Designs

Intel® HLS Compiler

Intel® FPGA SDK for

OpenCL™

Programmable Solutions Group

Intel® HLS
Compiler

82

Accelerator Function Development

HDL Programming OpenCL Programming

HDL

SW
Compiler

exe AFU
Image

Syn.
PAR

OPAE
Software FIM

CPU FPGA

AFApplicationAFU
Simulation

Environment
(ASE)

C

ASE
from Intel

OPAE
from Intel

Intel® Quartus
Prime Pro

Kernels

exe
AFU

Image

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software FIM

CPU FPGA

AFApplication

Host

Intel® FPGA SDK for OpenCL™

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group 83

AFU Development Software Requirements

Acceleration Stack SDK

– Quartus Prime Pro Software 17.1.1 for v1.1 Acceleration Stack (17.0 for v1.0)

– IP-PCIE/SRIOV License

– Low Latency 10Gbps Ethernet MAC(6AF7 0119) license

– Low Latency 40Gbps Ethernet MAC and PHY(6AF7 011B) license

python2-jsonschema package from the epel repository (version 2.7 or higher)

GCC – C compiler version 4.7 or greater

RTL Simulator

– Synopsys VCS-MX version 2016.06-SP2-1

– 64-bit ModelSim SE version 10.5c or higher

– 64-bit QuestaSim version 10.5c or higher

Programmable Solutions Group 84

Overview of OPAE Platform for AFUs

OPAE Platform is an abstraction of a hardware platform for which AFUs are designed

▪ Enables generating AFs from AFUs designed for generic OPAE Platform for any OPAE
compliant hardware

Platform Interface Manager (PIM) defines a generic OPAE platform for which AFU top-levels
should be designed to ensure provisioning on multiple hardware platforms

▪ The AFU requests the device interfaces and properties it needs from the PIM using a platform
configuration file specification (.json)

▪ Generates a shim that translates hardware platform-specific device interfaces to the OPAE
Platform’s generic device interfaces used by the AFU

▪ Shim inserted between platforms PR region and the AFU providing top level module interface
for the AFU

Programmable Solutions Group 85

Clocks

CCI-P

Power

Error

HSSI

Local Memory

OPAE Platform Device Classes

Programmable Solutions Group 86

AFU and CCI

Develop AFU with standard FPGA development tools

Interface with the acceleration stack through Core Cache Interface (version P)

▪ Provides a base platform memory interface

– Simple request/response interface (Simple cacheline Read/Write)

– Physical addresses (unified with x86 CPU)

– Split transactions (replies matched to request using a tag)

– No order guarantees

▪ These minimal requirements satisfy major classes of algorithms, e.g.:

– Double buffered kernels that read from and write to different buffers

– Streaming kernels that read from one memory-mapped FIFO and write to another

▪ Standardized interface abstracts workload away form potential changing hardware interfaces
saving months of work

On-FPGA
Interconnect

AFUCCI-P

Programmable Solutions Group 87

Core Cache Interface: Overview

CCI abstracts AFU from lower level PCIe and UPI protocols

Enables AFU to access host memory and respond to MMIO requests

Composed of 3 command and response channels

▪ 3 TX and 2 RX independent channels

– Only TX channels 0 and 1 capable of backpressure

▪ Supports bidirectional 512-bit data operating at 400MHz pClk domain

▪ Host memory accesses are on 64Byte Cache Line (CL) basis

– Supports Multi-CL bursts of 2 or 4

– Supports write fence mechanism to support synchronizing shared host memory accesses between
AFU and Host SW application

▪ MMIO Addressing is D-word aligned (4-byte) and AFU must support 4 or 8-byte MMIO Accesses

FPGA
Interface

Unit
(FIU)

Accelerator
Functional

Unit
(AFU)

RX CH 1

RX CH 0

TX CH 2

TX CH 1

TX CH 0

AFU Host memory WR Responses

AFU RD Responses and
MMIO RD/WR Requests

MMIO RD Responses

AFU RD Requests

AFU Host memory WR requests

https://www.altera.com/documentation/buf1506187769663.html

https://www.altera.com/documentation/buf1506187769663.html

Programmable Solutions Group 88

CCI-P Signal Mapping

Accelerated
Functional

Unit

AFU

R
X

T
X

c0_ReqMmioHdr

address / 16

length / 2

rsvd

tid / 9

C
0

vc_used / 2

hit_miss / 1

cl_num / 2

resp_type / 4

mdata / 16

c0_RspMemHdr

data / 512

rspValid / 1

mmioRdValid / 1

mmioWrValid / 1

C
1c1_RspMemHdr

vc_used / 2

hit_miss / 1

cl_num / 2

resp_type / 4

mdata / 16

format / 1

rspValid / 1

C
0

c0_ReqMemHdr

vc_sel / 2

cl_len / 2

req_type / 4

address / 42

mdata / 16

valid / 1

c0TxAlmFull / 1

C
1

c1_ReqMemHdr

vc_sel / 2

cl_len / 2

req_type / 4

address / 42

mdata / 16

valid / 1

c1TxAlmFull / 1

sop / 1

data / 512

tid / 9

C
2

c2_RspMmioHdr

mmioRdValid / 1

data / 64

pClk

pClkDiv2

pClkDiv4

uClk_usr

uClk_usrDiv2

pck_cp2af_softReset

pck_cp2af_pwrState

pck_cp2af_error

CH 0 – host memory read requests and responses as well receiving
MMIO requests from host

CH 1 – Host memory WR requests and responses
CH2 – MMIO read responses back to host

Programmable Solutions Group 89

Intel FPGA Basic Building Blocks (BBB)

Suite of RTL shims for transforming the CCI interface

Memory Properties Factory (MPF)

▪ Adds features to the base CCI memory interface

CCI Async-shim

▪ Clock crossing shim for slower-running accelerators

CCI Multiplexer

▪ Allows multiple agents to share a single CCI-P interface

$ git clone https://github.com/OPAE/intel-fpga-bbb

Programmable Solutions Group 90

Memory Properties Factory (MPF)

Provides a common collection of memory semantic extensions to CCI-P

Applications instantiate only the semantics they require

Each MPF block is implemented as a CCI-P to CCI-P shim

▪ Consume CCI-P requests

▪ Implement some feature (e.g. translate virtual addresses to physical)

▪ Produce transformed CCI-P requests

Application-specific memory hierarchies are formed by composing MPF shims

AFU FIU

C
C

I-
P

System
Memory

Physical Channel

Physical Channel

Physical Channel

M
P

F

C
C

I-
P

Programmable Solutions Group 91

MPF Composable Shims

All MPF shims may be enabled or disabled independently and run at full speed:

▪ VTP: Virtual to physical address translation

▪ ROB: Reorder buffer to sort read responses and return them in request order

▪ VC Map: Map requests to system memory channels explicitly

▪ WRO: Intra-line write/read ordering

▪ PWRITE: Partial (masked) write emulation using read-modify-write

Note: Some shims depend on other shims, e.g:
WRO on VC Map
PWRITE on WRO

Programmable Solutions Group 92

Example Designs to Get Started

Example Description

Hello AFU Simple AFU with direct CCI connection for MMIO access

Hello Intr AFU Example use of user interrupts

Hello Mem AFU Example showing using USR Clock to auto close timing in the
AFU

DMA AFU Example DMA AFU to move data between host memory and
local FPGA memory. Uses BBB and bridges Avalon to CCI

Streaming DMA AFU Example DMA AFU to move data between host memory and
the AFU directly as a streaming packet

Eth e2e e10 10Gb Ethernet loopback design

Eth e2e e40 40Gb Ethernet loopback design

NLB mode 0 Native LoopBack adaptor (rd/wr) with more features

NLB mode 0 stp Native LoopBack adaptor with SignalTap remote debug

NLB mode 3 Native LoopBack adaptor (rd/wr).

Programmable Solutions Group 93

AF Project Structure
Overview of hello_afu example AFU

Start with existing design and modify for your needs

▪ The ./hw directory provides an example file structure for the AFU’s design source and build
structure

– The location of RTL source, .sdc constraint files, SignalTap .stp files, etc is your choice

▪ Host OPAE software application source in the ./sw directory

– To perform the co-simulation environment

– Can be located elsewhere, but leverage scripts and directory structure

Project directory typically contains :

▪ AFU’s Quartus settings file (./hw/afu.qsf)

▪ AFU’s RTL

▪ AFU’s Quartus PR build directory (./build) with project files and compiled AF image (.gbs)

– Created at compile time by provided build flow scripts

▪ Platform configuration file (.json)

▪ Build configuration file (.txt)

Programmable Solutions Group 94

AFU RTL Source
Mandatory Source Files and Hierarchical Structure

afu.sv

▪ AFU top-level RTL source file describing accelerator

▪ Can have any name, but the top-level module within must be
named “afu”

ccip_std_afu.sv

▪ Mandatory wrapper RTL file that instantiates the afu module
described in afu.sv

▪ Instantiates mandatory ccip_interface_reg module described in
the mandatory ccip_interface_reg.sv source file

The .json file is the platform configuration file describing the
devices classes required by AFU

The filelist.txt file specifies the build configuration (including
source files and .json file)

Programmable Solutions Group 95

Platform Configuration File (.json)

Specify the AFU’s UUID

▪ uuidgen To generate

Request a top-level interfaces

▪ ccip_std_afu, ccip_std_afu_avalon_mm (see next slides)

▪ Optional HSSI device interfaces (see .json file from 10Gb or 40Gb design examples)

Request pipelining on device interfaces

▪ Adds user defined number of pipeline register stages to cci or local memory interfaces

Request clock crossing on device interfaces

▪ Inserts clock crossing bridge to synchronize cci and local memory to a clock

Specify a requested device interface as optional

Specify AFU user clock timing

▪ Close timing using user clock frequency range defined here

Programmable Solutions Group 96

AFU RTL Source
ccip_std_afu.sv Source File (1/2)

ccip_std_afu Module provides the
wrapper for instantiating the AF into
the FIM framework

▪ Provides access to the FIU host
interface

▪ Provides access to the local DDR4
SDRAM banks

Programmable Solutions Group 97

AFU RTL Source
ccip_std_afu.sv Source File (2/2)

Your AFU goes here

Programmable Solutions Group

Hardware System

98

AFU Overview Flow

AF Simulation Environment (ASE) enables seamless portability to real HW

▪ Allows fast verification of OPAE software together with AF RTL without HW

– SW Application loads ASE library and connects to RTL simulation

▪ For execution on HW, application loads Runtime library and RTL is compiled
by Intel® Quartus into FPGA bitstream

AFU Simulation
Environment

Xeon® FPGA

Simulation
Compilation

AFU RTL

OPAE SW
Application

Quartus®
Compilation

Software
Compilation

Test &
Validate AFU

Generate the
AF

Programmable Solutions Group 99

AFU Development Flow Using OPAE SDK

AFU requests the ccip_std_afu top level interface classes

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/hello_afu.json

AFU RTL files implementing accelerated function

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/afu.sv

List all source files and platform configuration file

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/filelist.txt

In terminal window, enter these commands:

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

▪ afu_sim_setup --source hw/rtl/filelist.txt build_sim

Specify the Platform
Configuration

Design the AFU

Specify Build
Configuration

Generate the ASE
Build Environment

Programmable Solutions Group 100

AFU Development Flow Using OPAE SDK

Compile AFU and platform simulation models and start simulation server process

▪ cd build_sim

▪ make

▪ make sim

In 2nd terminal window compile the host application and start the client process

▪ Export ASE_WORKDIR= $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/
build_sim/work

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/sw

▪ make clean

▪ make USE_ASE=1

▪ ./hello_afu

Specify the Platform
Configuration

Design the AFU

Specify Build
Configuration

Generate the ASE
Build Environment

Verify AFU with ASE

Programmable Solutions Group 101

AFU Simulation Environment (ASE)

Hardware software co-simulation environment for the Intel Xeon FPGA development

Uses simulator Direct Programming Interface (DPI) for HW/SW connectivity

▪ Not cycle accurate (used for functional correctness)

▪ Converts SW API to CCI transactions

Provides transactional model for the Core Cache Interface (CCI-P) protocol and memory model for
the FPGA-attached local memory

Validates compliance to

▪ CCI-P protocol specification

▪ Avalon® Memory Mapped (Avalon-MM) Interface Specification

▪ Open Programmable Acceleration Engine

Programmable Solutions Group 102

Simulation Complete

AFU Simulator Window (server) Application SW Window (client)

Programmable Solutions Group 103

AFU Development Flow Using OPAE SDK

Generate the AF build environment:

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

▪ afu_synth_setup --source hw/rtl/filelist.txt build_synth

Generate the AF

▪ cd build_synth

▪ $OPAE_PLATFORM_ROOT/bin/run.sh

Specify the Platform
Configuration

Design the AFU

Specify Build
Configuration

Generate the ASE
Build Environment

Verify AFU with ASE

Generate the AF
Build Environment

Generate the AF

Programmable Solutions Group 104

Using the Quartus GUI

Compiling the AFU uses a command line-driven PR compilation flow

▪ Builds PR region AF as a .gbs file to be loaded into OPAE hardware platform

Can use the Quartus GUI for the following types of work:

▪ Viewing compilation reports

▪ Interactive Timing Analysis

▪ Adding SignalTap instances and nodes

Programmable Solutions Group 105

Provide Software Developer With a Specification

Memory mapped register space

▪ Software uses to discover, control
and communicate with FPGA
accelerator

– Report status flags

– Start/Stop control of
acceleration workload

063

MMIO address

0x0020

words (CCI-P)bytes (OPAE)

0x080

CSRs (read/write)

scratch_reg

GUID

AFU ID_L

AFU ID_H

NEXT_DFH

Reserved

0x0000

0x0002

0x0004

0x0006

0x0008

0x0000

0x0008

0x0010

0x0018

0x0020

AFU header (read-only)

AFU ID (low 64 bits)

AFU ID (high 64 bits)

Pointer to next DFH

Reserved space

Global Unique ID

D
e

vi
ce

 F
e

a
tu

re
 H

e
a

d
e

r

Programmable Solutions Group 106

AFU Design Using High Level Synthesis (HLS)

Leverage GNU compatible HLS compiler to produce verified RTL

Designing at a higher level of abstraction = increase productivity

▪ Debugging software is much faster than hardware

▪ Easier to specify functions in software

▪ Simulation of RTL takes thousands times longer than software

▪ Easier to modify C/C++ source than RTL

Transistors RTL Software

Programmable Solutions Group 107

Tune Results with Architectural Exploration

Intel® HLS Compiler optimization directives can be used to tune results

Goal: Same performance as hand-coded RTL with 10-15% more resources

2

4

3

5

1

Architectural
Solution Space

Area

Performance

Parallelism

Clock Cycles

Pipelining

Memory Architecture

Single / Dual Port RAMs

Design Tuning Knobs

Directive Optimization

Loop Rolling Area vs Performance

ii Throughput

Clock Fmax

Memory Map arrays into device memories

Interface Memory mapped, streaming, wire

Programmable Solutions Group

HDL IP

108

HLS Use Model

Standard
gcc/g++

Compiler

EXE

main

f f

t1

f11

f

t2

f

f21

f22 f23

f12 f13

C/C++ Code

HLS
Compiler

FPGA

AFU

Directives

Intel® Quartus® Ecosystem

100% Makefile
compatible

src.c

lib.h

g++ <options> a.exei++ <options>

FIM

CCIP

External Memory
Interface

PCIe

Programmable Solutions Group 109

AFU Debug with Remote SignalTap
Introduction

Remote SignalTap enables in-system debug of AFUs on PAC installations with
limited physical access

Remote debug capability in OPAE supports the following in-system debug tools
included with Quartus Prime Pro:

▪ In-system sources and probes

▪ In-system memory content editor

▪ Signal Probe

▪ System Console

Programmable Solutions Group

Simulate AFU with Host Application and Generate AF

110

Programmable Solutions Group

Out-of-Box Flow for Acceleration Stack

Buy Server
w/ PAC

Download & Install
Deployment Package of

Acceleration Stack

Intel Website

Deployment
Flow

Development
Flow

Download & Install
Developer Package of

Acceleration Stack

Install
Supported

OS

Supported OEM
Server Website

(i.e. Dell)

Vendor Website
(i.e Red Hat)

Download &
Install Workload

Download &
Install Simulator

Download &
HLS or OpenCL

(Optional)

Write Host
Application

Vendor Website

Create & Simulate
Workload

111

Programmable Solutions Group 112

Download Acceleration Stack on Acceleration Hub

Programmable Solutions Group

Download Page for the Acceleration Stack

113

Programmable Solutions Group

Announcing Our First OEM Partner For Intel PAC

Data center servers
with FPGA accelerators

available now!

More OEM providers coming soon!

Programmable Solutions Group 115

Best Known Configurations (BKC)

Intel® Arria® 10 PAC board
qualified at Dell for variety of Dell
servers

Only available in certain
configurations of these servers

Refer to BKC guide to know how
to configure

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/solution-sheets/base-configuration-guide-intel-fpgas-for-acceleration-in-dell-emc-servers.pdf

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/solution-sheets/best-known-configuration-intel-fpgas-for-acceleration-in-dell-emc-servers.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/solution-sheets/base-configuration-guide-intel-fpgas-for-acceleration-in-dell-emc-servers.pdf

Programmable Solutions Group 116

Choosing a BKC Allows PAC to Appear

Programmable Solutions Group

Broadening Customer Fit - Hardware

We provide qualified systems to ensure compatibility

Component Degree of Flexibility Comments

FPGA A10 1150 GX-2 Only FPGA offered on Arria 10 PAC

PCIe Card Arria 10 PAC Only card that has been qualified at this point

Processor Intel Broadwell & Skylake; potentially more VT-d & VT-x extensions required

Server Platform Purley potentially more

Server System 1RU, 2RU & 4RU Rack Servers Compatibility guidelines planned for Q2 2018

Repurpose card? Yes

Memory 48GB RAM suggested
16 GB is sufficient if using only pre-compiled
FPGA binaries

Programmable Solutions Group

Broadening Customer Fit - Software

We embrace an open ecosystem

Component Degree of Flexibility Comments

OS
RHEL & CentOS 7.4
(3.10 or 4.12 Kernel)

Upstreaming Linux kernel driver
Intending to qualify with Ubuntu, SuSE
FPGA driver can be loaded as kernel module

Hypervisor (VM) KVM Partnering with VM Ware (ESXi hypervisor)

Container Format Untested at the moment Linux driver architected to support containers

Bare Metal Support Yes Linux driver architected to support bare metal

VM Management None. Partnering with VM Ware (vSphere)

Cloud Orchestration Open Stack
PAC + Accel. Stack deployed with OpenStack
Kubernetes support for FPGA Docker Containers
(alpha)

119

Recommended Getting Started Process

Install VM with Linux and install Acceleration Stack Development Flow

Run through quick start guide to validate environment

▪ Run ASE on Hello AFU

▪ Regenerate hello_afu GBS and application

If applicable, run the OpenCL example

Examine the DMA_AFU and/or Streaming_DMA_AFU example to understand how to move data using DMA
with AFU

Run Signal Tap using nlb_mode_0_stp and hello_fpga

Create your own by modifying one of the example designs

* 01.org is an open source community site

• Acceleration Stack for Intel® Xeon® with FPGAs

• FPGA Acceleration Platforms
• Acceleration Solutions & Ecosystem
• Knowledge Center
• FPGA as a Service
• 01.org *

Intel® portal for all things related
to FPGA acceleration

25

Follow-On Training:

Instructor Led Training Courses

▪ Introduction to High-Level Synthesis with Intel® FPGAs

▪ High-Level Synthesis Advanced Optimization Techniques

▪ Introduction to OpenCL

▪ Optimizing OpenCL™ for Intel® FPGAs (16 Hours Course)

Online Training Course

▪ Introduction to the Acceleration Stack for Intel® Xeon w/
FPGA

▪ OpenCL™ Development with the Acceleration Stack

▪ RTL development and acceleration with the Acceleration
Stack

▪ Application Development on the Acceleration Stack for
Intel® Xeon® CPU with FPGAs

▪ Introduction to High-Level Synthesis (7 courses)

▪ Introduction to Parallel Computing w/ OpenCL on FPGAs

▪ Deploying Intel FPGAs for Inferencing with OpenVINO
Toolkit

▪ Programmers’ Introduction to the Intel® FPGA Deep
Learning Acceleration Suite

https://www.altera.com/support/training/overview.html

https://www.altera.com/support/training/overview.html

Programmable Solutions Group Intel Confidential 122

Exercise 3: Add and Test a Scratch Register

First add a scratch register to the
AFU that you do something with
(i.e. multiply by 2)

Then add the software capability
in the host application to
communicate with the new
register and test it

063

MMIO address

0x0020

words (CCI-P)bytes (OPAE)

0x080

CSRs (read/write)

0x00220x088

scratch_reg

GUID

AFU ID_L

AFU ID_H

NEXT_DFH

Reserved

0x0000

0x0002

0x0004

0x0006

0x0008

0x0000

0x0008

0x0010

0x0018

0x0020

AFU header (read-only)

AFU ID (low 64 bits)

AFU ID (high 64 bits)

Pointer to next DFH

Reserved space

Global Unique ID

UserScratch_reg

D
e

vi
ce

 F
e

a
tu

re
 H

e
a

d
e

r

