

Agenda

2

▪ High Performance Computing

▪ History of Electronics Design Description Techniques

▪ Semiconductors choices for computational workloads

▪ Comparison of RTL vs High Level Design Techniques

▪ HLS vs OpenCL

▪ Labs

4

What is meant by a HPC workload?

Assuming 3 cycle per multiplication operation on a 3 GHz processor.

A single threaded processor can produce 1 new multiplication

product every 1 billionth of a second. Sound like a lot ? Hmmm,

maybe not?

A 2012 ImageNet classification algorithm* takes a 256x256 pixel

image and classifies it against 1000 categories that the image might

map to. This (unoptimized) algorithm takes 12.2 trillion multiplies!

With a single multiply product every 1 billionth of a second, it would

take 12,200 seconds to categorize (3 hrs, 24 minutes) at one multiply

every one billionth of a second.

*
https://vast.cs.ucla.edu/sites/default/files/publications/CNN_ICANN14.pdf

High-performance computing (HPC) is the use of parallel processing for

running advanced application programs efficiently, reliably and quickly. The term

applies especially to systems that function above a teraflop or 1012 floating-point

operations per second (definitions may vary)

https://vast.cs.ucla.edu/sites/default/files/publications/CNN_ICANN14.pdf

5

MNIST Example
Modified National Institute of Standards and Technology database

Large database of handwritten digits used for image recognition – researchers study this data set for optimal

algorithmic solution

Digit Recognition

http://scs.ryerson.ca/~aharley/vis/conv/

The average internet user will generate

~1.5 GB of traffic per day
Smart hospitals will be generating over

3 TB per day
Self driving cars will be generating over

4,000 GB per day… each

All numbers are approximated
http://www.cisco.com/c/en/us/solutions/service-provider/vni-network-traffic-forecast/infographic.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
https://datafloq.com/read/self-driving-cars-create-2-petabytes-data-annually/172
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html

Self driving cars will be generating over

4 TB per day… each
A connected plane will be generating over

40 TB per day
A connected factory will be generating over

1 PB per day

radar ~10-100 KB per second

sonar ~10-100 KB per second

gps ~50 KB per second

lidar ~10-70 MB per second

cameras ~20-40 MB per second

1 car 5 exaflops per hour

The Problem: Flood of Data

By 2020

7

Typical High Performance Computing Workloads

Astrophysics Molecular Dynamics*

Big Data Analytics Cyber SecurityFinancial

Artificial Intelligence

Weather & CLimate
* Source: https://comp-physics-lincoln.org/2013/01/17/molecular-dynamics-simulations-of-amphiphilic-macromolecules-at-interfaces/

Genomics / Bio-Informatics

https://comp-physics-lincoln.org/2013/01/17/molecular-dynamics-simulations-of-amphiphilic-macromolecules-at-interfaces/
https://comp-physics-lincoln.org/2013/01/17/molecular-dynamics-simulations-of-amphiphilic-macromolecules-at-interfaces/

8

50 GFLOPS/W

~100MW

I/O I/O

Challenges Scaling Systems to Higher Performance

9

Memory

Result:

Slow

Performance

(high latency)

Compute

Intensive

(not enough

ALUs/DSPs)

System

Result:

Excessive power

requirements

IO Intensive

(lack IO

bandwidth)

Bottleneck

BottleneckBottleneck

Need to think about Compute Offload as well as Input/Output Processing

Memory Intensive (can’t store data)

Result: Slow Performance

10

The Intel Vision
Heterogeneous Systems:

▪ Span from CPU to GPU to FPGA to dedicated devices with

consistent programming models, languages, and tools

CPUs GPUs FPGAs ASSP
Application Specific

Standard Product

11

Separation of Concerns

Two groups of developers:

▪ Domain experts concerned with getting a result

– Domain experts (data scientists) focus on formulating their problems

– Host application developers leverage optimized libraries

▪ Tuning experts concerned with performance

– Typical FPGA developers that create optimized libraries

– Tuning experts focus on vectorization and parallelization

History of Digital Electronic Design Descriptions

13

▪ Manual Design – Designer manually described each layer

▪ Early ASIC/FPGA CAD – Netlist manual entry / 1st generation place and route

▪ Espresso and other first generation optimizers – truth table reduction

▪ Verilog and VHDL go mainstream

▪ System Verilog and Verification centric methods

▪ High Level Design – abstract away hardware details so that the software

community can program ASICs and FPGAs

1960 1970 1980 1990 2000 2010 2020

Manual

ASIC/FPGA

CAD

Verilog

VHDL

System

Verilog

OpenCL
espresso

Catapult C

1960s Manual Semiconductor Design

14

• Manually drawn layout and interconnect

• Manual checks of design rule checks (DRC)

1970s/1980s

15

▪ Early EDA tools automate error prone and tedious electronic

design techniques

▪ Schematic capture

▪ Place and route

▪ Physical design rule checks

1990s: Hardware Description Languages (RTL) Go Mainstream

16

▪ VHDL developed through US Dept of

Defense

▪ Verilog developed through Silicon Valley

startup (Gateway Automation, later

acquired by Cadence)

▪ Languages originally used for modelling

▪ Synopsys Design Compiler revolutionized

compiling RTL language to gate level description

and offered a huge increase in productivity (still

primary means to describe electronics)

2000s

17

▪ Behavioral descriptions slowly gains popularity (Catapult VC,

OpenCL) – C derivative languages

▪ Network on Chip – GUI based System Integration and IP

integration

OpenCL Network on Chip

OpenCL

18

▪ Framework for writing programs across heterogeneous platforms

▪ CPU, GPU, DSP, ASIC, FPGA

▪ Standard Interface for parallel computing

▪ Initiated through Apple, maintained by non-profit company

Khronos Group

▪ Based on C++

Understanding Connectivity

19

• Bus: Communication system that transfers data between

components in a computer, or within an IC

• Examples:

• PCI Express – Motherboard to peripheral board connectivity

• AXI – On-chip connectivity standard (ARM)

• Avalon – Simliar to AXI but Intel FPGA specific

Mapping a Simple Program to CPU versus FPGA

20

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 → Mem[100]

High-level code

Mem[100] += 42 * Mem[101]

CPU instructions

First let’s take a look at execution on a simple CPU

21

B

A
A

ALU
Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Fixed and general

architecture:

- General “cover-all-cases” data-paths

- Fixed data-widths

- Fixed operations

Looking at a Single Instruction

22

Very inefficient use of hardware!

B

A
A

ALU
Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Sequential Architecture vs. Dataflow Architecture

Sequential CPU Architecture FPGA Dataflow Architecture

A

AA

AA

A

load load

store

42
R

e

s

o

u

r

c

e

s

Time

23

Custom Data-Path on the FPGA Matches Your Algorithm!

24

Build exactly what you need:

Operations

Data widths

Memory size & configuration

Efficiency:

Throughput / Latency / Power

load load

store

42

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path

Execution of Threads on FPGA – Naïve Approach

25

▪ Thread execution can be executed on replicated pipelines in the

FPGA

▪ Throughput = 1 thread per cycle

▪ Area inefficient

t0 t1 t2

Parallel Threads

t3 t4 t5

C
lo

c
k
 C

y
c
le

s

Execution of Threads on FPGA

26

▪ Better method involves taking advantage of pipeline parallelism

▪ Attempt to create a deeply pipelined implementation of kernel

▪ On each clock cycle, we attempt to send in new thread

t0t1t2

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Execution of Threads on FPGA

27

▪ Better method involves taking advantage of pipeline parallelism

▪ Attempt to create a deeply pipelined implementation of kernel

▪ On each clock cycle, we attempt to send in new thread

t1t2

t0
kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Execution of Threads on FPGA

28

▪ Better method involves taking advantage of pipeline parallelism

▪ Attempt to create a deeply pipelined implementation of kernel

▪ On each clock cycle, we attempt to send in new thread

t2

t1

t0

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Execution of Threads on FPGA

29

▪ Better method involves taking advantage of pipeline parallelism

▪ Attempt to create a deeply pipelined implementation of kernel

▪ On each clock cycle, we attempt to send in new thread

t2

t1

t0

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Execution of Threads on FPGA

30

▪ Better method involves taking advantage of pipeline parallelism

▪ Attempt to create a deeply pipelined implementation of kernel

▪ On each clock cycle, we attempt to send in new thread

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

t2

t1

t0

Execution of Threads on FPGA

31

▪ Better method involves taking advantage of pipeline parallelism

▪ Attempt to create a deeply pipelined implementation of kernel

▪ On each clock cycle, we attempt to send in new thread

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

t2

t1

Execution of Threads on FPGA

32

▪ Better method involves taking advantage of pipeline parallelism

▪ Throughput = 1 thread per cycle

t0

t1

t2

t3

t4

t5

C
lo

c
k
 C

y
c
le

s
kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

t2

How languages generate parallel hardware

33

RTL
always @ (posedge clock) begin

product_1 <= a * b;

product_2 <= c * d;

product_3 <= e * f;

product_4 <= g * h;

end

C Based Language
#pragma unroll 4

for (uint i = 0; i < 3; i++) {

uint num1 = first_num_cache[i];

uint num2 = second_num_cache[i];

ulong out_prod = num1 * num2;

out_prod_cache[i] = out_prod;

}

// Specific to OpenCL - ndrange

__kernel void sum (__global const float * restrict a,

__global const float * restrict b,

__global float * restrict answer) {

size_t gid = get_global_id(0);

answer[gid] = a[gid] * b[gid];

}

Fine grained parallelism within a kernel

In this case 4 multipliers in parallel

Coarse grained parallelism – good for

working on arrays of data (eg video)

with no dependencies

35

Differences in programming model for OpenCL vs HLS

HLS (block level approach)

FPGA Designer designs all blocks - unlike

OpenCL, for HLS flow the Board Support

Package is not included

Interfaces can be designed with RTL or IP block

generation tools

HLS block plugs into Avalon bus – Intel provides

automated tool called Platform Designer that

enables automated integration of blocks into the

bus

OpenCL (Full chip approach)

Runs as an accelerator to a host processor

Designer does not need to understand

hardware design – this is completely abstracted

away. Concepts like pipelining or resource

allocation. Better optimization happens with

HW background.

Intel provides FPGA interfaces with external

memory, PCIe and network (Board Support

Package)

Programmer writes C++ “like” language with

extensions to force parallelism

OpenCL

Platform

Model

36

OpenCL Heterogeneous Platform Model

Host

Example

Platform
x86

PCIe

GPU Device FPGA Device
Host Memory

Global Memory

CU = Computational Unit
kernels

Intel FPGA SW Developer’s Kit for OpenCL™ Flow

37

Kernel compiler:

– Optimized pipelines from C/C++

Board support package: (created by hardware developer)

– Timing closure, pinouts, periphery planning – we’ve got it covered

System integrator: (Quartus runs behind the scenes)

– Optimized I/O interconnects

foo.cl

Compiler

Board Support Package

HDL IP Core

System

Integrator

FPGA in a System

OpenCL

Host

Program

38

HLS Design Flow
High Level Synthesis

DDR

Memory

Interface

USB Ethernet

GPIO HLS Based Accelerator

Avalon Internal Bus

FPGA Designer designs all blocks - unlike OpenCL, for HLS flow the

Board Support Package is not included

Interfaces can be designed with RTL or IP block generation tools

HLS block plugs into Avalon bus – Intel provides automated tool

called Platform Designer that enables automated integration of blocks

into the bus

component int add(int a, int b) {

return a+b;

}

add

start

busy

a[31:0]

b[31:0]

done

stall

clock

HDL IP

40

HLS Use Model

Standard

gcc/g++

Compiler

EXE

main

f f

t1

f11

f

t2

f

f21

f22 f23

f12 f13

C/C++ Code

HLS

Compiler

FPGA

IP

IP

Directives

Intel® Quartus®

Ecosystem

100% Makefile

compatible

src.c

lib.h

g++ <options> a.exei++ <options>

41

Intel® HLS Compiler Usage and Output

src.c

lib.h

i++ -march=x86-64 src.c a.exe|out

Develop with C/C++:

Run Compiler for HLS:

a.prj/components/func/

src.c

lib.h

i++ -march=<fpga fam> -–component
func src.c

a.exe|out

a.prj/reports/

a.prj/verification/

a.prj/quartus/

GDB-Compatible Executable

Executable which will run calls to func

in simulation of synthesized IP

All the files necessary to

include IP in a Quartus project.

i.e. .qsys, .ip, .v etc

Component hardware

implementation reports

Simulation testbench

Quartus project to compile all IP

a is the default output name, -o option can be used to specify a non-default output name

42

HLS Procedure: x86 Emulation

Intel® HLS

Compiler

HDL IP

C/C++ Source

Functional

Iterations

Architectural

Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS

• Generates IP

• Examine compiler generated reports

• Verify design in simulation

Run Quartus® Prime Compilation on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

$ g++ test.cpp

$./a.out

Hello world

$

// test.cpp

#include <stdio.h>

int main() {

printf("Hello world\n");

return 0;

}

Example Program

Terminal Commands and Outputs

Simple Example Program: i++ and g++ flow

$ i++ test.cpp

$./a.out

Hello world

$

Using the default –march=x86-64

43

$ i++ test.cpp –march=x86-64 –o test-x86

$ gdb ./test-x86

………………………………………………………………

<GDB Command Prompt>

(gdb)

// test.cpp

#include "HLS/hls.h"

#include "HLS/stdio.h"

component void say_hello() {

printf("Hello from the component\n");

}

int main() {

printf("Hello from the testbench\n");

say_hello();

return 0;

}

Example Program Terminal Commands and output

gdb Example

$ i++ test.cpp –march=Arria10 –o test-fpga

$ gdb ./test-fpga

………………………………………………………………

<GDB Command Prompt>

(gdb)

44

Todays Labs

46

▪ Two labs - Verilog RTL versus HLS comparison

▪ Lab 1: State machine stoplight controller – exact number of seconds tick away

before lights change

▪ Lab 2: Parallel multiplies on incoming data stream – multiply pairs of number as fast

as possible to keep up with data streaming in from an external DDR3 memory

North/South Green for 60 secs

East/West Green

for 40 secs

Traffic Light Controller: 60 sec NS, 40 sec EW

47

HLS for state machine design

Traffic Controller RTL HLS

Lines of Code 120 75

Registers 10 213

Bits of memory 0 0

ALMs 14 134

DSP 0 0

Fmax NA (1 sec clock,

not relevant)

NA

Why so many resources for HLS? Scheduling algorithm adds extra logic, and Avalon bus interface added to HLS.

• HLS is C/C++ based which means there

is no precise way to specify cycle

accurate state machine like Verilog/VHDL

• As a consequence, traffic control in HLS

only possible with nested loops and

selection (if-else/switch) statements

• These loops (B1/B2, B3/B5, and B4)

require logic and registers to achieve

desired functionality and best

performance

TRAFFIC CONTROLLER ARCHITECTURE

49

HARDWARE DESCRIPTION
• Basic Block 0

• Serves as initial control point for starting the component

• Basic Blocks 1 & 2

• Describes component as loop to handle multiple stream reads/writes

• Needs 18 registers to manage feedback control, stream i/o, and links to other blocks

• Basic Blocks 3 & 5

• Outermost loop in component handling number of traffic light state changes

• Needs 50 registers to manage feedback control, data coherency, and pipelining

• Basic Block 4

• Innermost loop in component required for holding states to accurate number of cycles

• Needs 40 registers to manage feedback control, pipelining, and links to other blocks

50

51

Memory Controller

Memory Controller

Workload

800 MHz DDR3 Memory (Double Data Rate 1600 MTS)

800 MHz DDR3 Memory (Double Data Rate 1600 MTS)

64

64

Ingress memory contains

a constant stream of 32

bit numbers to be

multiplied

Egress memory contains

64 bit results

Goal is to build workload

accelerator that keeps up

with ingress stream

256

256

400 MHz Single Data Rate

400 MHz Single Data Rate

Backpressure (if accelerator cant keep up)

8 32 bit words @

400 MHz

8 32 bit multiplies @ 200 MHz – Added 4 pipeline stages to meet fmax

4 64 bit products @

400 MHz

8 64 bit

products @

200 MHz

RTL Code

53

Pros:

▪ Very concise for one specific case

▪ Easy to see parallelism across 2 clock

rates and three edges in always blocks

Cons:

• Need to figure clock domains, exact

registers and how to pass data across

200/400 MHz clock domains

• The specific case is tuned for having the

exact number of multipliers ... But what if

the number of multipliers was reduced?

Would need complete rewrite with back

pressure to slow down the input stream

which would overtake the available

multiplier resources.

HLS Code

54

HLS for parallel multiply exercise (8 multiply 32 bits)

55

Parallel Mult RTL – 4 stage pipelined

multiplier

HLS – 8 stage

pipeline

Lines of Code 38 25

Registers 2816 6890

Bits of memory 0 191,360

ALMs 768 2559

DSP (2 * 18x19 mult) 16 12

Fmax 325 MHz (200Mhz rqmt) 387.75 MHz * pipelined

mult

Conclusions

▪ RTL based method best for precise timing – state machine and control centric

operations. Easier to control number of resources used and aligning edges to

clock cycles

▪ High Level Design enables productivity gains for computational centric

problems that involve vector arithmetic. Introduces pipelining automatically.

Good for video, AI, compression, etc. Not as optimal for area and

performance, but quicker development

▪ High Level design excellent for algorithmic development and analysis – very

quick to simulate – and easier to create test benches. Development Iteration

cycle improves by 3-5X

56

