
 
 

 

 

 

 

Introduction to High Level Design 

Workshop 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2019.05.31 

  



 

1. Overview 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

2 

Contents 
1. Overview .............................................................................................................................................................................................3 

1.1. Introduction .......................................................................................................................................................................3 
1.2. Setup ....................................................................................................................................................................................3 

1.2.1. Oracle VirtualBox Setup .....................................................................................................................................3 
1.2.2. NoMachine Setup ..................................................................................................................................................5 

2. RTL Implementation of Simple Traffic Light State Machine ........................................................................................6 

2.1. Review the traffic controller state machine in Verilog ....................................................................................6 
2.2. Observe the traffic controller simulation .............................................................................................................7 

3. HLS Implementation of Simple Traffic Light State Machine .................................................................................... 10 

3.1. Observe the HLS emulation of the state machine ......................................................................................... 10 
3.2. Observe the HLS cosimulation of the state machine ................................................................................... 11 

4. Compare Compilation Reports .............................................................................................................................................. 15 

4.1. RTL Compilation Report ............................................................................................................................................ 15 
4.2. HLS Compilation Report ........................................................................................................................................... 15 

5. RTL Implementation of Parallel Multiplier ....................................................................................................................... 17 

5.1. Review the Parallel Multiplier in Verilog ............................................................................................................ 17 
5.2. Observe the Parallel Multiplier Simulation ....................................................................................................... 19 

6. HLS Implementation of Parallel Multiplier ....................................................................................................................... 22 

6.1. Observe the HLS emulation of the parallel multiplier ................................................................................. 22 
6.2. Observe the HLS cosimulation of the Parallel Multiplier ........................................................................... 23 

7. Compare Compilation Reports .............................................................................................................................................. 25 

7.1. RTL Compilation Report ............................................................................................................................................ 25 
7.2. HLS Compilation Report ........................................................................................................................................... 26 

 

 



3 
 

3 
 

1.1. Introduction 
With the ever-growing number of software engineers in the field, High-level Synthesis 

(HLS) has become a tool many tech companies have decided to invest in. As we discussed 

earlier, HLS is an automated design process that interprets an algorithmic description of a 

desired behavior and creates digital hardware that implements that behavior. It works at a 

higher level of abstraction than traditional hardware descriptive languages (such as Verilog 

or VHDL) by starting with an algorithmic description in C/C++, and synthesizes it down to a 

register-transfer level (RTL) design. The goal of HLS is to allow hardware AND software 

designers to efficiently build and verify hardware in an algorithmic domain.  

 

In this exercise, we will first observe the flow for designing a simple traffic light controller 

in Verilog using Intel® Quartus® Prime and simulating it using ModelSim® simulator. We will 

then observe the HLS flow by implementing the same traffic light algorithm in C++ and 

using the HLS compiler to synthesize the code down to RTL. The last section of this lab will 

compare the compilation reports generated by Quartus and HLS.  

1.2. Setup 
The following steps describe how to set up and connect to the virtual machine needed for 

this lab which uses ModelSim* simulator, the Intel Quartus Prime software, and HLS. 

If you are connecting via Oracle VirtualBox, refer to section 1.2.1 

If you are connecting via NoMachine (Intel users only), refer to section 1.2.2 

 

1.2.1. Oracle VirtualBox Setup 
1. Launch Oracle VM VirtualBox to open to VM VirtualBox Manager 

The latest version of VirtualBox can be installed at https://www.virtualbox.org/ 

2. Insert the USB Stick handed out into your PC 

3. In the VM VirtualBox Manger, click Machine -> Add New Device. Map to the USB Drive 

plugged into your PC and open the file FPGA_Train_CentOS6_18_0.vbox 

4. In the VM VirtualBox Manager, right click on the recently added 

FPGA_Train_CentOS6_18_0 machine then click Settings 

a. Ensure Ubuntu (64-bit) version is selected under the ‘General’ tab 

b. In the ‘System Tab’, under ‘Motherboard’ ensure the Base Memory you are 

allocating is in the green area of the spectrum. See figure below for details. 

1. Overview 

https://www.virtualbox.org/


 

1. Overview 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

4 

 

Figure 1: Adjust Base Memory in System Settings 

c. In the Acceleration tab of ‘System’ ensure your settings match those below 

 

Figure 2: Acceleration Enablement in System Settings 

Adjust with this knob 



5 
 

5 
 

5. Once all the appropriate settings are set, click Start  

a. When prompted enter the following password : QPrime.1 

 

 

Once the Ubuntu virtual machine is successfully running, you will need to run a script to 

retrieve the Quartus Pro, ModelSim-Intel, and HLS resources. Perform the following steps: 

1.  Open a Terminal session by right clicking -> Open in Terminal 

2. Type cd  

3. Type source fpga_trn/High_Level_Design_Workshop/init.sh 

 

You now have all the necessary resources and are ready to begin the exercises!  

 

1.2.2. NoMachine Setup 
1. Launch the NoMachine Enterprise Client and connect to a virtual desktop 

2. Open up a terminal  

a. Right click  Open in Terminal 

3. Copy the Workshop tar file to your current directory & unzip 

a. Type the following two commands in your Terminal: 

cp /home/mberglun/High_Level_Design_Workshop.tar.gz . 

tar –xvzf High_Level_Design_Workshop.tar.gz 

4. Open up a terminal and connect to a 16G machine 

a. Type  

arc submit -I mem=16000 -- konsole 

5. Retrieve the ARC resources needed to launch Quartus Prime Pro Edition, ModelSim-

Altera, and HLS compiler 

a. Type  

arc shell acds/19.1, modelsim_se-lic/hdl, acltest/19.1, 
qedition/pro, modelsim_se/10.6d, aclboardpkg/a10_sdk, 
gcc/7.2.0/1, hls, hlsgcc, modelsim_se 

 

 You now have all the necessary resources and are ready to begin the exercises!  
 

 



 

2. RTL Implementation of Simple Traffic Light State 

Machine 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

6 

This section involves observing the Verilog code and ModelSim simulation for a simple 4-state traffic 

light controller. It will provide a showcase of how easy it is to design and simulate a state machine 

directly in RTL as well as a setup for Section 3, where we will compare the ease of designing/simulating 

a state machine in RTL with that of HLS.  

2.1. Review the traffic controller state machine in Verilog 
1. From the terminal, navigate to the directory where the Quartus project is stored and 

open it 

a. Type  

cd High_Level_Design_Workshop/Lab1/traffic_control_rtl 

b. Type  

quartus traffic_control.qpf &  

to open the Quartus project.  

2. In the Project Navigator window located on the left, click the Files tab and double click 

traffic_control_tb.v and traffic_control.v open the Verilog files 

 

 

Figure 3: Project Navigator File Tab 

 

3. Inspect the two files for details on the state machine algorithm & test bench (for 

simulation). Comments throughout the code will explain what is going on & is 

summarized below. When ready, minimize Quartus, as it will be revisited in Section 4 

when comparing the Compilation Reports generated from RTL & from HLS. 

2. RTL Implementation of Simple Traffic Light State Machine 



7 
 

7 
 

 

The traffic controller state machine contains four states as shown in Figure 4. Each state 

contains four 3-bit wide outputs used to describe the status of all the lights at the 

intersection: 

  

a. north_south is the initial state of the traffic controller. In this state, the north & 

south traffic light outputs are green. Consequently, the east & west traffic light 

outputs are red. The state machine remains in this state for 60 clock cycles, as 

more cars tend to travel north/south compared to east/west at this 

intersection.  

b. north_south_y is the next state the controller transitions into, where the north 

& south traffic light outputs are yellow and the east & west traffic light outputs 

are red. The state machine remains in this state for 3 clock cycles. 

c. east_west is the next state the controller transitions into, where the north & 

south traffic light outputs are red and the east & west traffic light outputs are 

green. The state machine remains in this state for 40 clock cycles, as less cars 

tend to travel east/west compared to north/south at this intersection. 

d. east_west_y is the final state the controller transitions into, where the north & 

south traffic light outputs are red and the east & west traffic light outputs are 

yellow. The state machine remains in this state for 3 clock cycles. After this 

state, the controller transitions back into the initial state north_south.  

 

Figure 4: Traffic Controller State Machine (this view is from Quartus Lite only) 

2.2. Observe the traffic controller simulation 
1. From the terminal, type the following command to open the ModelSim project for the 

traffic controller simulation 

a. vsim simulation/modelsim/traffic_control_sim.mpf & 

2. In the Transcript window located at the bottom of the ModelSim session, type in the 

following command to run the simulation script: 

a. do wave.do 



 

2. RTL Implementation of Simple Traffic Light State 

Machine 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

8 

 

Figure 5: Run ModelSim simulation 

 

3. Maximize the Wave window which opened from the previous command. 

4. Press F to get a full view of the simulation from start to finish. 

5. Zoom in to obtain the view shown in Figure 6. This will give a better view of the output 

values at a given point in the simulation.  

i : keyboard shortcut to zoom in 

o : keyboard shortcut to zoom out 

 

Notice the n_lights and s_lights output signals transitioning from 001 to 010 to 100 before 

returning to 001. Consequently, the e_lights and w_lights output signals transition from 

100 to 001 to 010 before returning to 100.  

 001 represents green 

 010 represents yellow 

 100 represents red 

Upon closer inspection, you can see that the simulation stays in each state for the 

corresponding amount of clock cycles mentioned in Section 2.1 step 3.  

Note, you may need to zoom in further to properly observe the state durations (bottom 

signal of simulation)  



9 
 

9 
 

 

Figure 6: Traffic Control simulation (RTL) 

 

 

 

 

Figure 7: Zoomed in further to show counter values 

Counter signal determining 

state durations 



 

3. HLS Implementation of Simple Traffic Light State 

Machine 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

10 

The HLS procedure contains three main steps to integrate a C/C++ algorithm down into RTL. The first 

step is called emulation, which is nothing more than a functional verification of the C/C++ source code 

that was written. This compiler is essentially the exact same as the standard g++ compiler used in the 

C/C++ programming language; this will not generate any RTL. The next step is called cosimulation, 

which generates both RTL & compiler reports for a targeted FPGA device, and also allows you to verify 

your design in simulation. The final step involves running an Intel Quartus Prime compile on all the 

generated RTL files to obtain a more accurate report on resource utilization and the clock’s fmax. This is 

essentially the same as step 2 with one additional part.  

 

This section will walk you through this HLS flow by first performing emulation, then a cosimulation, and 

finally a Quartus compile.  

3.1. Observe the HLS emulation of the state machine 
1. From the terminal, navigate to the traffic_control_hls directory 

a. Type  

cd ../traffic_control_hls 

2. Inspect the C++ implementation of the traffic light controller  

a. Type  

gedit traffic_control.cpp & 

As in the RTL implementation, the algorithm starts in an initial state, where the north & 

south lights are green and east & west lights are red. After a certain duration, it moves to 

the next state, and so on. Comments throughout the code explain the C++ 

implementation for the traffic controller state machine, and any discrepancies between 

the Verilog version (also discussed at the end of this section). 

 

Close the gedit window. 

3. Run an emulation compile on traffic_control_fin.cpp  

a. Type  

i++ -march=x86-64 traffic_control.cpp -o emulation 

This command performs the same compilation as the general g++ compiler used in 

C++ but using the i++ Intel® HLS Compiler instead. 

Note that in cosimulation, there are HLS-unique directives such as ‘component’ 

(used to synthesize a C++ function down to RTL) and ‘#pragma max concurrency N’ 

(used to pipeline loop instructions).  

In emulation, these directives are simply ignored in compilation because it is set to 

mimic the g++ compilation flow.  

4. Run the executable (named ‘emulation’ in this case) generated from the compilation 

performed in step 3.  

3. HLS Implementation of Simple Traffic Light State Machine 



11 
 

11 
 

a. Type  

./emulation 

 

Figure 8: Terminal output after running ‘emulation’ executable  

The output produced from emulation (shown in Figure 8) is nothing more than a functional 

verification of the C++ code. From the output above, we can deduce that the algorithm 

transitions to the next appropriate states, but have no notation of how many clock cycles a 

given state remains in. Because of its fast compilation time, emulation provides a quick 

turn-around in functional verification of code compared to RTL.   

 

3.2. Observe the HLS cosimulation of the state machine 
The following is generated when specifying cosimulation to the HLS compiler: 

 An executable which will run the testbench (the main() function in C++). Any calls to functions 

from the testbench will be part of the simulation. 

 All files necessary to include IP in an Intel Quartus software project (i.e. .qsys, .ip, .v, ect) 

 Component hardware implementation report (estimation) 

 Simulation testbench  

 Intel Quartus software project (.qpf) to compile all the IP and generate a more accurate report) 

 

1. Run a cosimulation compile on traffic_control.cpp 

* OPTIONAL: Compilation time takes ~ 3 minutes for this design. A waveform file has 

already been generated from a previous compile, so steps 1 and 2 may be skipped.  

a. Type 

 i++ -ghdl -march=Arria10 traffic_control.cpp -o cosimulation 

This is when HLS directives placed within the C++ code take an effect. 



 

3. HLS Implementation of Simple Traffic Light State 

Machine 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

12 

The component identifier placed in front of the function state_logic (line 35) 

specifies to the compiler to generate RTL for this function and simulate any 

outputs from it.  

#pragma max concurrency 1 on line 39 specifies to iterate through the loop 

without pipelining. This specification is actually ignored due to the inner while-

loop (line 74) being pipelined (called loop iteration ordering), but showcases 

common usage of a popular HLS directive.  

This compilation will generate RTL for any functions marked as a component, 

create a Quartus project, a Compilation Report, and a testbench. 

2. Run the executable (named ‘cosimulation’ in this case) generated from the compilation 

performed in step 3. This executable runs the main() function and serves as the 

testbench in simulation. 

a. Type  

./cosimulation 

Execution will generate a .wlf waveform file  

3. Launch the vsim.wlf file generated from step 2a through ModelSim-Intel. 

a. Type  

vsim cosimulation.prj/verification/vsim.wlf & 

4. In the Transcript window located at the bottom of the ModelSim session, type in the 

following command to run the simulation script: 

a. do hls_wave.do 



13 
 

13 
 

 

Figure 9: Run ModelSim Simulation 

5. Maximize the Wave window which opened from the previous command. 

6. Press F to view the simulation from start to finish. Recall you can zoom in/out with the 

I/O keys of your keyboard.   

 

 

Figure 10: Traffic Control simulation (HLS) 

 

Upon closer inspection, you will likely immediately notice three things: 



 

3. HLS Implementation of Simple Traffic Light State 

Machine 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

14 

1. There is only one output (returndata) as opposed to four outputs seen in the RTL 

simulation. Referring to traffic_control.cpp, you can see that the states declared in lines 

27 through 31 actually represent the decimal numbers seen. 

a. LIGHT_STATE_ENTRY (decimal 0 in simulation) represents the initial state (see 

explanation below) 

b. LIGHT_STATE_NS_GREEN_EW_RED (decimal 1 in simulation) represents the 

next state where north & south lights are green and east & west lights are red. 

c. LIGHT_STATE_NS_YELLOW_EW_RED (decimal 2 in simulation) represents the 

next state where north & south lights are yellow and east & west lights are red 

d. LIGHT_STATE_NS_RED_EW_GREEN (decimal 3 in simulation) represents the 

next state where north & south lights are red and east & west lights are green 

e. LIGHT_STATE_NS_RED_EW_YELLOW (decimal 4 in simulation) represents the 

next state where north & south lights are red and east & west lights are yellow 

2. The return data is undefined for some time at the beginning of the simulation. This is 

why the extra state LIGHT_STATE_ENTRY was added to the state machine. The 

undefined output is mainly due to the way the compiler schedules the busy loop and 

state assignments, so the extra LIGHT_STATE_ENTRY state was added to give an 

accurate representation of the state machine in ModelSim. 

3. A clock cycle offset of 10 was discovered after initial simulation. This means a value 

designed to hold for 1 clock cycle is actually held for 11 in simulation, due to the offset. 

To combat this, all state durations were scaled up by a factor of 4 to create correct 

cycle durations with respect to one another.   

a. N/S lights GREEN, E/W lights RED : 60 cycles  240 cycles 

b. N/S lights YELLOW, E/W lights RED : 3 cycles  12 cycles  

c. N/S lights RED, E/W lights GREEN : 40 cycles  160 cycles 

d. N/S lights RED, E/W lights YELLOW : 3 cycles  12 cycles 

 

 

 



15 
 

15 
 

4.1. RTL Compilation Report 
1. Bring Quartus session launched in Section 2 back up 

a. If closed, type quartus traffic_control.qpf & to re-open the RTL project  

b. Open up the Compilation Report by typing Ctrl + R 

2. Observe the number of ALMs and registers used from the Verilog-compiled RTL. 

a. ALMS = 12, Registers = 8 

The register count comes from the following: 

- 6 registers for ‘count’ (line 18 in traffic_control.v) 

- 2 registers for ‘state’ (line 30 in traffic_control.v) 

Adaptive Logic Module (ALM) is the basic building block of supported FPGA device 

families and is designed to maximize performance and resource usage; the ALM 

count is relative to the number of logic elements (LEs) used in the design. 

4.2. HLS Compilation Report 
1. Navigate to the directory containing the HLS report generated from cosimulation 

1. Type  

cd ../traffic_control_hls/cosim_quartus_compile.prj/reports 

This .prj directory was generated with the command ‘ i++ -march=Arria10 --quartus-

compile traffic_control.cpp -o cosim_quartus_compile ‘ which performs an Intel 

Quartus Prime software compilation on all the components in the cpp file.  

2. Obtain the full path to this directory 

1. Type pwd 

3. Open report.html in Firefox to view the cosimulation report 

1. Click on the Firefox icon located at the top left of your NoMachine session 

 

4. Enter the path returned from the pwd command into the address line of Firefox, directly 

after file:/// followed by report.html 

1. file:///<pwd path returned>/report.html 

5. Observe the number of ALMs and FFs used from the HLS-compiled RTL under the section 

“Quartus Fit Resource Utilization Summary” (you might need to scroll down) 

4. Compare Compilation Reports 



 

4. Compare Compilation Reports 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

16 

1. ALMs = 94.5, FFs = 152 

Note: the “Estimated Resource Usage” was produced directly from the cosimulation 

performed in Section 3.2.1 but is only a rough estimate, as suggested. A more accurate 

resource count was retrieved using the command mentioned in Step 1 of this section. 

Details on the estimated resource utilization can be seen in the “Area Analysis” tab of the 

report.  

 

An increase in resource utilization is expected due to the overhead in the tool we’re using. 

Generally speaking, the higher level a tool is when designing, the more control is 

abstracted away from the designer. In software, this can be thought of in terms of an 

assembly language versus a high level language (like Java or C). In assembly, the 

designer has more control because they can write values directly to registers in the CPU. 

This is often described as the computer language, as the CPU is able to interpret 

instructions directly; there is no compiler or translator. In high level languages, common 

activities such as handling datatypes and complex syntax is simplified, but ultimately 

gives less control to the designer. 

 

In terms of our traffic controller design, this overhead can most easily be seen in the 

durations we define to each state. In RTL, we can easily define the number of clock cycles 

to a given state because our counter is based on the positive edge of our input clock. This 

is made possible through use of ‘always’ blocks in hardware-descriptive languages. In 

C++, staying in a state for a definitive number of clock cycles is not as simple because we 

are not able to execute instructions based on the rising or falling edge of a clock cycle, as 

we are in RTL.  

 

Certain constraints were put in place in the C++ domain to get the HLS compiler to 

synthesize the code down to the desired RTL. This came with the cost of greater resource 

utilization; mainly due to the computations & loop dependencies (seen in Area Analysis of 

the HLS report).  

 

 

 

 

 

 

 

  



17 
 

17 
 

5.1. Review the Parallel Multiplier in Verilog 
1. From the terminal, navigate to the directory where the Quartus project is stored and 

open it 

a. Type  

cd  ../../../../Lab2/Lab2_RTL 

b. Type  

quartus parallel_mult.qpf &  

to open the Quartus project.  

c. In the Restored Archive Project pop-up, leave the Archive name & Destination 

folder to their default paths. Click OK. 

 

2. In the Project Navigator window located on the left, click the Files tab and double click 

tb_parallel_mult.v and parallel_mult.v open the Verilog files 

 

 

 

Figure 11: Parallel Multiplier RTL Code 

 

 

5. RTL Implementation of Parallel Multiplier 



 

5. RTL Implementation of Parallel Multiplier 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

18 

 

 

Figure 12: Parallel Multiplier RTL Test-Bench Code 

 

3. Open the Compilation Report located under the Compilation section of the Tasks tab 

in Quartus 

a. If the tasks tab is not visible upon opening Quartus, go to View  Tasks to 

display it 

b. Next, observe the RTL syntax and construction (if you see checkmarks then its 

already compiled if not then you need to compile it) 

c. Then go to Tools  RTL Viewer  

 

The following an example of the generated diagram used for the RTL implementation of 

the parallel multiplier. 



19 
 

19 
 

 

 

Figure 13: Parallel Multiplier RTL Diagram 

 

 

5.2. * Observe the Parallel Multiplier Simulation * (Don’t Do!  Skip To Figure)  
6. From the terminal, type the following command to open the ModelSim project for the 

traffic controller simulation 

a. vsim simulation/parallel_mult.mpf & 

7. In the Project tab on the ModelSim session, double click hdl_simulation located under 

the two green checks (signifying properly compiled Verilog files). 

8. In the Objects plane (dark blue window in ModelSim session), select all of the signals, 

right click, and select Add Wave to add the signals to your waveform.  

If you are unable to see the Objects plane, click View  Objects to open it.  

9. Move to the Wave tab and expand it to full screen by clicking the small ‘+’ button on 

the top right of the window.  

10. Click Simulate  Run  Run-All (you may have to return to the Wave tab after doing 

this). 

11. You will need to change the radix of your symbols from Binary to Decimal. Do this by 

selecting all the signals located to the left of your waveforms 

a. Right click all the symbols  Radix  Decimal  

b. Expand the window containing the signal names to display the entire name of 

all the signals 

12. Press F to get a full view of the simulation from start to finish. 

*Note* In the interest of time we will not be able to manually arrive at the simulation 

environment. Instead, a completed waveform will be provided. 



 

5. RTL Implementation of Parallel Multiplier 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

20 

 

 

Figure 14: Parallel Multiplier RTL Test-Bench Simulation 

 

As can be seen by the Figure 13, the multiplier inputs named “multiplier_0” and 

“multiplicand_0”, act as 256-bit registers which obtain a different value at the rising edge 

of each cycle of the “clock_200_pll” signal. After an initial latency of 4-cycles, the results of 

the multiplication operations are seen, in the 512-bit bus value named “product_0”.  The 

simulation is organized in a manner as to facilitate the multiplication of the following pairs 

of numbers:  

 

(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14). 

 

The corresponding results should be as follows:  

 

 

           (0), (12), (30), (56), (90), (110), (132), (182). 



21 
 

21 
 

 



 

6. HLS Implementation of Parallel Multiplier 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

22 

6.1. Observe the HLS emulation of the parallel multiplier 
1. From the terminal, navigate to the Lab2 directory 

a. Type cd ../../../../Lab2 

2. Inspect the C++ implementation of the parallel multiplier  

a. Type vim mult2.cpp & 

b. Observe that there exists both a “main” section” and a “component” section. 

For the “component” code/function, the compiler will interpret it as a normal 

C++/C function during the emulation compile (shown in the following step). 

Additionally, the section of the code preceded by “main” will behave as the 

default C++/C driver function.  

3. Run an emulation compile on mult2.cpp  

a. Type i++ -march=x86-64 mult2.cpp –o mult2_out 

b. An “emulation” compile will simply compile the “.cpp” or “.c” files using the 

default GNU compiler, generating the corresponding executable files (.exe) and 

running the code like a normal C/C++ program. 

4. Execute emulation 

a. Type ./mult2_out 

 

Figure 16: 8 bit Parallel Multiplies of 8-pairs of 32-bit integers 

6. HLS Implementation of Parallel Multiplier 



23 
 

23 
 

 

 This is an example of Parallel Multiplication performed on incoming data stream. A 512-bit 

data stream is read, partitioned into 8-pairs of 32-bit multiplier inputs, and then multiplied. 

The multiplication occurs in parallel (via 8  32-bit multipliers) and the 8 64-bit products will 

be, subsequently, recombined/repackaged  into a 512-bit outgoing word. 

6.2. Observe the HLS cosimulation of the Parallel Multiplier 
1. Run a cosimulation compile on mult2.cpp 

a. Type i++ -ghdl -march=Arria10 mult2.cpp -o mult2_fpga 

2. Execute cosimulation 

a. Type ./mult2_fpga 

Execution will generate a .wlf waveform file  

3. Launch ModelSim-Altera to view the parallel multiplier simulation generated through 

HLS 

a. Type vsim mutl2_fpga.prj/verification/vsim.wlf & 

4. On the vsim tab located on the left of the ModelSim instance, right click mult_pair_inst 

and click Add Wave 

5. Maximize the window, change the Radix of all signals, and press F for a full view 

Note: When performing the cosimulation compile, and subsequent waveform generation, it 

is worth noting that the “main” and “component” sections of the mult2.cpp file take on 

different roles than described in the previous emulation section 3.1. Specifically, the 

“component” code/function will be converted into a quartus-recognizable, HDL (Verilog) file. 

The “main” section will then take on the role of serving as a testbench for the RTL simulation. 

When viewed, the waveform will simulate the functional behavior of the “component” code 

using the interactions encountered by each instantiation of the “component” as expressed 

within the code for the “main” section. 

 

 

Figure 17: Parallel Multiplier (memory reads) (zoomed in view) 



 

6. HLS Implementation of Parallel Multiplier 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

24 

As can be seen by the above waveform, the “avmm_1_r_readdata” bus/signal represents 

the 512-bits of incoming data from the I/O stream. The packing of the data is done in such 

a way as to enable the bus to be easily partitioned into 8 pairs of 32-bit multiply inputs.  

Quick Maths: (512 bits incoming stream/ 2 multiply inputs) / (32 bits multiplied) = 8 pairs  

 

Note that the 512- bit bus signal is represented by a hexadecimal value (4 bits binary). The 

total length of the signal in the hexadecimal domain is 128 digits long.  

        Quick Maths: (512 binary bits / 4 bits per hexadecimal digit) = 128 hex digits 

                     

        These are the expected multiplier pairs coming from the stream:  

 

(0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11), (12, 13), (14, 15) 

          

Notice that the most significant 8- hexadecimal digits is “0000000f” represents the value of 

(15)10 and the second most significant 8 – hexadecimal digits “0000000e” represents the 

value of (14)10 . 

   

 

 

Figure 18: Parallel Multiplier (memory write-back) (zoomed in view) 

 

The above Figure 5, illustrates the write-out of the resulting 512-bit product. The 

“avmm_2_w_writedata” bus/signal represents the 512-bits of outgoing data. The packing 

of the data is done in such a way as to enable the bus to be easily partitioned into 8 

groupings of 64-bit multiply outputs.  

 

               These are the expected multiplier pairs coming from the stream:  

 

(0), (6), (20), (42), (72), (110), (156), (210) 

 

 

Notice that the most significant 16- hexadecimal digits is “00000000000000d2” 

represents the value of (210)10 



25 
 

25 
 

7.1. RTL Compilation Report 
 

 1.    Bring Quartus session launched in Section 2 back up 

a. If closed, type quartus parallel_mult.qar & to re-open the RTL project  

b. Open up the Compilation Report by clicking Processing  Compilation 

Report 

2. Observe the number of ALMs and FFs used from the Verilog-compiled RTL. 

a.  ALMS = 466, Registers = 1280 (note that 1024 are in the DSP blocks) 

  

                     

               

  Figure 19: Parallel Multiplier (Case 1: 8 – 32-bit multiplies) RTL Resource Usage 

 

 

 

 

 

 

 

7. Compare Compilation Reports 



 

7. Compare Compilation Reports 

2019.05.31 

 

 

Introduction to High Level Design Workshop 

26 

7.2. HLS Compilation Report  
1. From the terminal, navigate to the directory where the Quartus project is stored and 

open it. 

2. Use the cursor to manually navigate to the “reports” folder. From your Desktop within 

NoMachine: 

Lab2  mult2_fpga.prj  reports 

3. Double click on the “reports.html” file and you should be re-directed to the reports 

page 

 

          

 

Figure 20: Parallel Multiplier (Case 1: 8 – 32-bit multiplies) Resource Summary 

As can be seen by the resource summary report for the 8 32-bit multiplies, there were 36 RAMs 

used, 5461 FlipFlops used, 1607 ALMs used, and 16 DSPs used by the HLS as opposed to 0 

RAMs, 256 Registers, 466 ALMs, and 24 DSPs used by the RTL compiler. This can be seen as 

due to additional Avalon-Interface signals included with the HLS component, and additionally, 

more resources are used (possibly in pipelining) to improve speed of the execution. In the HLS 

code, 2 Avalon memory masters (of large size) are used to serve as inputs to the component, 

which could serve as an explanation for the high amount of Flipflops and RAMs.  

 

  

 

Figure 21: Parallel Multiplier (Case 2: 4 – 32-bit multiplies) Resource Summary 

 


