EMBEDDED FPGA DESIGN
WITH THE NIOS Il PROCESSOR

To learn more, visit http://fpgauniversity.intel.com.

© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel
Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance
with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. Other names and brands

may be claimed as the property of others.

http://fpgauniversity.intel.com

CONTENTS

Lab Overview
Lab Notes

Design Flow

Objective of the "Hello World” Lab

Get Started with Quartus

Part 1: Hardware Design

Lab 1: Building Your Platform Designer Based Processor System

1.1: Adding the Nios Il Processor i i
1.2: Adding On ChipMemory e e
1.3: Adding the JTAGUART Component
1.4: Adding Parallel IO(PIO)o e

1.5: Connecting the System Components Together.

Lab 2: Buildingthe Top LevelDesign it

Part 2: Software Design
Lab 1: Creating the Software for the “Hello World" design

Lab 2: Downloading the Hardware Image to the DevelopmentKit

Lab 3: Using the Seven SegmentDisplay

Lab Summary

Appendix

List of Figures . .
List of Tables . .

Revision History

11
13
13
16
24

29
29
33
37

39

LAB OVERVIEW

This lab teaches you how to create an embedded system implemented in programmable logic

using the Intel” Nios Il processor, sometimes reffered to as a "soft” processor. The Nios Il can
be synthesized on any Intel” FPGA device, and has a built in programmable logic fabric that
can be easily modified to suit an applications’ requirements. Intel” SoC FPGA devices contain
a processor built from standard cells that cannot be changed without redesigning the chip,
and are therefore called a textithard processor system. The Nios Il processor is supported by
a rich set of peripherals and intellectual property (IP) blocks built that can be configured and
connected to the processor using the Platform Designer tool within the Intel” Quartus Prime
software suite. Intel also distributes the Nios Il Software Build Tools (SBT) within the Quartus
download for use with Eclipse* during software development.

This lab is organized to run on a number of Intel” FPGA development kits. The links to the
other kits can be found in the Design Store as a Design Example and type in “hello” in the
search bar. This lab will show you how to install the development kit pin settings, design the
processor-based hardware system, download it to the development it, and run a simple “Hello
World"” software program which displays text on your terminal. The initial section of the lab is
split into a hardware section and a software section.

https://fpgacloud.intel.com/devstore/platform/

LAB NOTES

IMPORTANT: PLEASE READ AND FOLLOW THESE GUIDELINES THROUGHOUT THE
LAB OR THE LAB WILL NOT WORK!

« The lab will require you to choose files, components, and other objects. They
must be spelled exactly as directed.

« DO NOT USE SPACES IN THE FILE NAMES OR DIRECTORIES.

 This is necessary for consistency and to ensure that each step works properly in
the lab, when creating your own systems, you can choose your own names if you
use them consistently in your project.

Quartus Prime is Intel FPGA's design tool suite. It serves a number of functions:

« Design creation through the use of HDL or schematics
« System creation through the Platform Designer graphical interface

« Generation and editing of constraints (timing, pin locations, physical location on die, I/O
voltage levels)

» Synthesis of high level language into an FPGA netlist, formally known as mappin

» FPGA place and route, formally known as fitting

» Generation of design image used to program an FPGA, formally known as assembly
« Timing Analysis

» Download of design image into FPGA hardware, formally known as programming

« Debugging by insertion of debug logic (in-chip logic analyzer)

« Interfacing to third party tools such as simulators

» Launching of Software Build Tools (Eclipse) for Nios Il
To download Quartus Prime Lite, follow these instructions:

O] Visit this site: https://fpgasoftware.intel.com/?edition=1ite.
O Select version 17.1 and your PC's operating system.

0 For the smallest installation and quickest download time, select only the fields shown
on the following page in Figure 1. If you are using the DE-10 Lite choose MAX10. If you
are using the DEO-CV choose Cyclone V.

https://fpgasoftware.intel.com/?edition=lite

M select All @

[“]Quartus Prime Lite Edition (Free)

[*]Quartus Prime (includes Nios Il EDS)
Size: 1.7 GB MD5: C6E662E428D1F5E93B6CC5B5076C3ED4

[IModelSim-Intel FPGA Edition (includes Starter Edition)
Size: 1.1 GB MD5: 9FOFCC22EBSADD19200D3C00B20EDCCS

Updates Available

M Devices
You must install device support for at least one device family to use the Quartus Prime software

[C1Arria Il device support
Size: 499.6 MB MD5: EA15FB95662AB632F2CD95A93D995A92

[Jcyclone IV device support
Size: 466.6 MB MD5: 09D346E4AE7AC403DFAF36563E6B7BFB

[JCyclone 10 LP device support
Size: 266.1 MB MD5: COD4AC6A692BEAC3EAC15473325218BB

[vIcyclone V device support
Size: 1.1 GB MD5: 747202966905F7917FB3B8F95228E026

[JMAX Il, MAX V device support
Size: 11.4 MB MD5: 77B086D125489CD74D05FD9ED1AA4883

[“IMAX 10 FPGA device support
Size: 325.2 MB MD5: 9B55655054A7EA1400160F27502F2358

4 L3

Download Selected Files

Note: The Quartus Prime software is a full-featured EDA product. Depending on your download speed,
download times mav be lenethv.

Figure 1: Quartus Download Page

O Follow the instructions to activate the Quartus Prime Lite version 17.1 tools on your PC.
No license is required to run the Quartus Lite software.

DESIGN FLOW

Unlike system development with hard processors, development with soft processors enables

you to optimize the processor system to your application requirements and use the FPGA to
add the performance and interfaces required by your system. This means that you need to
know how to modify the processor system hardware; this may sound challenging but thanks
to the Platform Designer graphical system design tool this is a relatively easy thing to do as
we will demonstrate in this lab.

The design flow diagram below illustrates how an overall system is integrated using the combi-
nation of the Platform Designer system integration tool, Quartus for mapping (aka synthesis),
fitting (aka place and route), and the NIOS Il Software Build Tool (SBT) for software develop-

ment.
Aadsy
HDL Files - Syeiem Descnplion
- ppininnalend feiipse
© Quartus i N Nios SBT A

FPGA Design
(3=
& Assign Pin.oul

Software
Development

Add Source Files.
= B

& Buiid

= Dby

= Run

r
| (Target
Program FPGA Drowvrikoaa Apgilc aton

Figure 2: Platform Designer Development Flow

Timing Conesirainis
= Compile
& Diowminad

The above diagram depicts the typical flow for Nios Il system design. Hardware System defi-
nition is performed using Platform Designer tool; the resultant HDL (.Qsys) files from the Plat-
form Designer system are used by the Quartus design software to map, fit and download the
hardware image into the FPGA device. Quartus also generates information that describes the
configuration of the system designed in Platform Designer so that the Nios Il SBT can be con-
figured to create a software library that matches the hardware system and contains all the
correct peripheral drivers.

0BJECTIVE OF THE "HELLO WORLD" LAB

This lab demonstrates how to use Platform Designer tool to design the hardware and software

to print “Hello World" to your screen. This requires a working processor to execute the code,
on-chip memory to store the software executable, and a JTAG UART peripheral to send the
“Hello World” text to a terminal. To make the lab a little bit more interesting and hardware-
centric, we will utilize the push button switches and LEDs to allow interaction with the devel-
opment kit. We will use connections to memory that the processor can access to map the
various switches and buttons on the device to the LEDs and seven-segment display.

The lab hardware is constructed with the components shown below. Intel utilizes the Platform
Designer network-on-chip interconnect to connect the master and slave devices together. To
get a clear understanding of how quickly one can build an embedded system using Platform
Designer and the Quartus Design Software, you will build the Nios Il system entirely from
scratch.

Nios On-Chip ITAG | Switches | |Buttons|
Memory UART
< Avalon >
<2

¥
Seven Segment

Display

Figure 3: Nios Il Based System Used In This Lab

GET STARTED WITH QUARTUS

This lab demonstrates how to use Platform Designer tool to design the hardware and software

to print “Hello World" to your screen. This requires a working processor to execute the code.
Follow the instructions below depending on what board you have for performing the lab.

[0 Depending on the board you are using, get the associated .zip folder from the design
files you downloaded for this lab. There are two options for each board. In the second
option, the hardware design is already done for you and you need to start at Part 1
Section 2.0 Step 7 and compile your design with the “play” button and then proceed
to the Part 2: Software design. This particular system will save roughly an hour of
work in completing your lab, but is less impactful in understanding the entire flow.

2x20 Altera MAX 10
GPIO 10M50DAF484C7G

Accelerometer 4-bit Resistor VGA

Arduino
Connector

5V Power

USB-Blaster ™
64MB SDRAM
Button x2
5V/GND
2-Pin Header
LED x10
7-Segment itch
Display x6 Switch x10
Figure 4: DE-10 Lite
usB
Power Blaster VGA
DC JACK Port Out PS/2

Micro SD Card
Power
ON/OFF
Altera USB
Blaster

Controller

Chipset Altera 28-nm

Cyclone V FPGA
5CEBA4F23C7N

2x20 GPIOx2

RUN/PROG
Switch for
JTAGIAS Modes
7-Segment
Display

LED x10 Switchx10 64MB Button x4 FPGA
SDRAM Reset

Figure 5: DEO-CV

O Unzip the .zip file. Right click on the .zip folder and select Extract All... Browse to the
directory you want your unzipped files to go and press Enter. Within the file there are

7

DE-10 Lite DE10_Lite_gsys_workshop.zip

DE-10 Lite* DE10_Lite gsys_Workshop_Systemdone.zip
DE@-CV DE@ _cv_qgsys_workshop.zip
DE@-CV* DE@_cv_qgsys_workshop_Systemdone.zip

*start at Part 1 Section 2.0 Step 7: Hardware System Done

Table 1: Resource Files

two items: C_CODE and DE10_Lite.qar or DEO_CV.gar (depending on your board) The
lab will not work if you do not unzip the files!

O Double click on the (.gar) file. [helloworld Jabqar | If you have Quartus completely
installed, the Quartus software should open the (.qar) file. (.gar) stands for Quartus

Archive File and allows a user to store a project and its related files in a single (.qar)
and then restore the project later. This is done for your convenience and to make the
overall lab time shorter.

[0 Select a destination folder where you want your project to be restored, by clicking on ...
near the destination folder. Make sure your destination folder is a C:// drive where your
installed Quartus or your documents location where you want your project to be. Select
OK for the first screen that appears when the (.qar) file opens.

O Restore Archived Project X

Archive name:

lszsys_workshop_ﬁlesfrunThroughIDE‘l G_Lite.qar‘

Destination folder:

|5_work5hop_ﬁlesfrunThrougthE‘l 0_Lite_restored ‘

[] overwrite any existing files in the destination folder

Figure 6: Selecting Archive Name and Destination Folder for the .qgar file.

Once the (.qar) is done unpacking all its files, you will be able to navigate around the main
Quartus window. We will start building our system by using Platform Designer.

PART 1: HARDWARE DESIGN

Lab 1: Building Your Platform Designer Based Processor System

The Platform Designer system panel diagram illustrates what you are designing in the Plat-
form Designer environment. The system we are building will have a clock, a single master (the

Nios Il processor), and 11 slave devices.

Building the Platform Designer system is a highly efficient way of designing systems with or

without a processor.

O Launch Platform Designer tool from Quartus: Tools — Platform Designer (or "Qsys”

prior to version 17.1). The initial screen you should see looks like this:

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 7: Platform Designer Main Panel

Next, we will add the various components of the system and make the connections between
them. By default Platform Designer inserts a clock module. We will connect to this later in the
lab.

1.1: Adding the Nios Il Processor

Look for the IP catalog tab in the top left of the Platform Designer window. Below the IP catalog
tab, you can search for the various components you want to add to your system.

O Enter Nios in the search tab and select the Nios Il Processor (not the Classic Nios Il) from
the library by double clicking. See Figure 6 on the following page for example.

< Qsys - unsaved.qsys® (Z\16.1\DEO_asys_workshop\DEO_gsys_workshop\hello_world_lab_restored\unsaved.qsys) - O X
File Edit sttem Generate View Tools HE'P
= IP Catalog SSI - m Address Map ¢ | Interconnect Requirements I - a
= . System: unsaved
(i) x® -
Proj : Use Co... Name Description Export Clock Base
“h:afvew Component... : 2 dk_0 Clock Source
Ba;é'gunmns ™ e dkin Clock Input dk exportea
~ Simulation; Debug and Verification o1 dk_in_reset Reset Input reset
= Slmulgtlltnn Nios 11 Custom Instruction M = dk Clock Output dk_0
* Altera Nios stom Instruction Mag | =
= Altera Nios II Custom Instruction Sla - SRS BESOpIE
— Processors and Peripherals
col_‘ﬁwclelsscmst Instructi N
-+ Nios II Custom Instructions
~ Embedded Processors P Cata|03
- Glassiaiiy 0cessor -
Window
< >
New... Edit.. + Add...
l,. Hm g Device Family =]
[“lunsaved [unsaved.gsys*]] < 2|
& w dk + ¥ % Current filter:
+ »= reset
+Hexdk_0 2o
Type Path Message
< >
0 Errors, 0 Warnings Generate HDL... | Finish

Figure 8: IP Catalog Tab

O A configuration window will appear. In this select the Nios Il/e Processor. The ‘e’ stands

for economy and the ‘f’ stands for fast. We will use the economy version in this lab.

& Nios Il Processor - nios2_gen2_0

X

“ Nios II Processor
Megtew Altera_nios2_gen2

© Error: nios2_gen2_0: Reset slave is not specified. Please select the reset slave
@ Error: nies2_gen2_0: Exception slave is not specified. Please select the exception slave

d
|- Block Diagram - Ll
D Show signals Main Vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPU Settings JTAG Debug
|- Selectan
nios2_gen2_0 Nios II Core: () Nios I/
clk (O Nios 11/
reset
irq o resetl—— 9§ Nios I1/e Nios II/f
debug_mem_slave nios_custom,_ custom Y 32-bit
RISC 32-bit RISC
Features |JTAG Debug JTAG Debug
ECC RAM Protection Hardware Multiply/Divide
Instruction/Data Caches
Tightly-Coupled Masters
ECC RAM Protection
External Interrupt Controller
Shadow Register Sets
MPU
MMU
RAM Usage |2 + Options 2 + Options
v
< > ||« >

o

Figure 9: Nios Il Gen2 Configuration Panel

O Aside from choosing ‘e’, keep the default settings and click Finish and you will see the

nios2_gen2_0 processor in your connection diagram.

10

12 System Contems 22| Address Map 22 | Interconnect Requirements 5% =1

System: unsaved Path: nios2_gen2 0

|| Use Connections hame Description Export Clock Base End RQ
] B dko Clock Source
. o dkiin Clock Input clk exported
X g clk_in_reset Reset Input reset
= clk Clock Gutput clk_o
clk_reset Resel Quiput
= B9 nios2_gen2_0 Nios Il Gen2 Pracessor
a clk. Clock Input unconnertel
reset Reset Input [cIk]
data_master Awvalon Memory Mapped Master [clk]
Instruction_master Avvalon Memory Mapped Master [clk]
irg Interrupt Receiver [clk] IRQ O IRD 31
debug_reset_request Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk] 0x0800 Ox0FFF
custom_instruction_master [Custam Instruction Master
< i >

Figure 10: Platform Designer System Contents Panel

For now, don't worry about the system errors reported. We will address them soon.

Platform Designer has a very elegant and efficient way of making connections by clicking on
the nodes on ‘wires’ in the connections panel on the second column from the left. You can
add the connections as you add components, but it's often easier to make all the connections
once you have finished adding the various blocks.

1.2: Adding On Chip Memory

With the Nios Il processor added, you still need to add: On Chip Memory, JTAG UART, push-
button inputs, switch inputs, LED outputs, and the 7-segment display output to your system.

A |p catalog 5 e |
s Memory "c
ijgcl (=]
1 Wew Component...
Library

¢ Basic Functions
¢ Bridges and Adaptors
¢ Memaory Mapped
@ Ayalon-mMM DOR Memory Half Rate Bridge
7 0n Chip Memary

@ Awalon FIFO Mermory
@ Awalon-5T Multi-Channel Shared Memory FIFO
= [on-Chip Mernary (RAM or ROM)|
¢ Simulation; Debug and Yerification
2 Simulation
@ Altera External Memory BFM
¢ Memary Interfaces and Controllers

¢ Processors and Peripherals
¢ Hard Processor Companents

@ Qevs Interconnect —
¢ Memory-Mapped
= Memony-mMapped Arbiter
@ Memory-Mapped Burst Adapter
= Memory-Mapped Combined sc_fifo Limiter
= Memonye-Mapped Combined Width Adapter
& Memory-Mapped Demultiplexer -

Figure 11: IP Catalog Search for On-Chip Memory

O Search for memory in the IP catalog. You will see many options for memory. Select On
Chip Memory — On-Chip Memory (RAM or ROM) as shown above.

11

[0 Double click on the component or click Add.

O Inthe component settings memory panel that pops up, you need to change the memory
size from 4096 to 65,536. This will ensure that you have a plenty of space for your

software program.

O Uncheck Initialize memory content. This feature includes the software executable in
the hardware image. For this lab, you will initialize the software executable from Eclipse.

2 On-Chip Memory (RAM or ROM) - onchip_memory2_0 X

“ On-Chip Memory (RAM or ROM)

Megters: _ altera_avalon_onchip_memoryz Documentation

I n
~ Memo

[show signals Y type

Type: RAM (Writable)

Dual-port access
onchip_memory2_0 t 2

Single dlock operation

clki
; Read During Write Mode: DONT_CARE
o =
Block -
aset] lock type AUTO
aftera_avalon_snchip_memary2
[size
Enable different width for Dual-port access
Slave S1 Data width 2 -
Total memory size: 65536 bytes
Minimize memory block usage (may impact fmax)
| Read latency
Slave st Latency: 1~
Slave 52 Latency: 1

~ ROM/RAM Memory Protection l
Reset Request: Enabled ~

[~ Ecc Parameter |
Extend the data width to support ECC bits: |pisabled ~

I emory ntatzat |

[] mitialize memory content
Enable non-default initialization file

Type the filename (e.q: my_ram.hex) or select the hex file using the file browiser button.

User created initialization file: onchip_mem.hex v

Cance

Figure 12: On-Chip Memory Configuration Panel

O Click Finish and you will now see a total of three components in your Platform Designer
system:

« clk ©
e nios2_gen2 ©

e onchip_memory2 0

See Figure 13 on the following page for what your Platform Designer window should look like
at this point in the lab.

12

1= system Contents 83‘ Address Map % | Interconnect Requirements 52 = (= =)
:‘D':lsyslem:unsaved Path: onchip_mermaory2 _0
Use Connections Mame Description Export Clock Base End IRQ
= ck_0 Clock Source
= clk_in Clack Input clk exported
E‘ (B clk_in_reset Feset Input reset
ok Clock Outut k0
clk_reset Reset Output
Ii‘ B3 nios2?_gen2_0 nMios Il Gen2 Processor
clk Clock Input uncennecle
reset Reset Input [clk]
data_master lAvalon Mermory Mapped Master [clk]
instruction_master lAvalon Memory Mapped Master [clk]
irg Interrupt Receiver [clk] IRQ O IRQ 31
cebug_reset_reguest Reset Output [clk]
debug_mem_slave LAwalon Memaory Mapped Slawve [clk] 00800 oxOfff
custam_instruction_master |Custom Instruction Master
& onchip_memory2_0 On-Chip Memary (RAM or ROM)
clicl Clock Input URCDRNELLE.
sl Awalon Memaory Mapped Slawve [clk1]
resetl Resel Input [clk1]
a I D

Figure 13: System Contents with Nios Il and On-Chip Memory

1.3: Adding the JTAG UART Component
The next component you will add is the JTAG UART.

O Search for JTAG in the IP catalog and locate the JTAG UART. Double click or click Add.

O Keep the default settings and click Finish.

0 @ 0-0 m|
JTAG UART
Megotors AllEra_avalon_jtag_uar Documentation
R DIRg |'t| - write riFo @ata rrom Avaton to ITAG) |

[[]show signals

o A
. Y

Bufer depth (brtes) (54 =

jtag_uart_0 f: IRQ threshald: E] |

[] Construct using registers instead of memaory Qlocks

"~ Read FIFO @ata from JTAG 1o Avalon)

2| Buffer depth (bvtes) [g4

| IRa thrashola: 5

[] Construct using registers instead of memary blocks

n_jtag_siave

/4 Warning: jtag_uart_0: Jtag Uart input clock need to be at least SOMhz 10 operate properly

Figure 14: JTAG UART Configuration Panel

1.4: Adding Parallel 10 (PI1O)

The next five components, which handle the interfacing of the switches, pushbuttons, and
LEDs, are configured instances of general purpose parallel IO components in the IP catalog.

13

By using the PIO block for the switches, buttons, and LEDs, you will be able to map these
values to address space and your C code will read and write these components.

O Search for Parallel 10 (P1O) and select the correct block.

O For the pushbutton block, we will set this up as a 2-bit input interface using the settings
shown below. There are two pushbuttons we would like to read from and two internal

signals (a modification to HDL to support the DE10 board).

[0 When you have set up your button input component interface as in Figure 15, click Fin-

ish.
2 PIO (Parallel 1/0) - pio_0 X
“ PIO (Parallel 1/0)
Megetorss Altera_avalon_pio Documentation
[Block Diag |
[Jsh : - Basic Settings |
o signats Width (1-32 bits): 3
Direction: (O sidir
pio_0
Input
o @ Input
aant) () nout
s O Output
avalon
external_cannection onduit Output Port Reset Value: |0x0000000000000000
altera_avalon_pio - Output Register]

Enable individual bit setting/clearing

~ Edge capture register |

D Synchranously capture

Edge Type: RISING

Enable bit-clearing for edge capture register

[Generate 1RQ
IRQ Type: LEVEL

Level: Interrupt CPU when any unmasked I/0 pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

~ Test bench wiring

D Hardwire PIO inputs in test bench

Drive inputs to field.: 0x0000000000000000

@ Info: pio_0: IO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

Cancel

Figure 15: Parallel 10 Configuration Panel for Pushbuttons

[J Double click on the PIO component as you did for the pushbuttons. This time you will
configure this component as the LEDs: a 9 bit, output interface. There are 10 LEDs.

However, only nine of them will be controlled by the NIOS.

0 When you have setup your LED output component interface as in Figure 16, click Finish.

14

& PIO (Parallel I/0) - pio_1 X

“ PIO (Parallel 1/0)

Megeters @lteTa_avalon_pio Documentation
|~ Block Diagram |
[show signals [Basic Settings |
g Width (1-32 bits): H
Direction: O gidir
pio_1
O Input
LS 1
[EE I Omou
s (@) output
gxternal_connection | o Output Port Reset Value: |0x0000000000000000
altera_avalon_pio wm ‘

[[] Enable individual bit setting/dlearing

[* Edge capture register |

Synchronously capture

Edge Type: RISING |

Enable bit-clearing for edge capture register

t Interrupt

Generate IRQ

IRQ Type: LEVEL &

Level: Interrupt CPU when any unmasked [/O pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

|~ Test bench wiring

Hardwire PIO inputs in test bench

Drive inputs to field.: 0x0000000000000000

Figure 16: Parallel 10 Configuration Panel for LED Outputs

O Again, double click on the PIO component. Configure this component as the switches: a
10 bit, input interface.

0 When you have setup your switch input component interface as in Figure 17, click Finish.

iile Edit System Generate View Tools Help

% Porameters 31 |
System: ros_setup_v2 _Path: switch

altera_avalon_pio

Width (1-32 bits): 10

Drecton: Osiar
® mput
Omout
Oouput

Output Port Reset Value: [0x0000000000000000

[Output Port Reset Value

odivdual bk sutingichearing [Outout Port Reset Value

[

] synchvonously capture
Edoe Type: s

Enable bit-clearing for edge capture register

[* Interrupt
[Generate RQ

RQ Type: Lever

Level: Interrupt CPU when any unmasked /0 pin is logic true
Edge: Interrupt CPU when any unmasked bitin the edge-capture
register is logic true. Available when synchronous capture is enabled

* Test bench wiring
(] Hordwire P10 inputs in test bench
Drive inputs o feld.t [1,0000000000000000

Figure 17: Parallel 10 Configuration for Switch Input Panel

15

O Finally, we will add the six seven segment displays that will allow us to display text on
the board. Create another PIO component, and configure it as a 7-bit output, one for
each light.

O When you have setup your seven segment display output component interface as in
Figure 18, click Finish.

|~ Block Diagram i
~ Basic
] show sigrels Width (1-32 bits): 7
Direction: O sidir
() Input
ik Sk
asal () InOut
51 (® output
extermal sctiol Output Port Reset Value: |0x0000000000000000
- L peiie
[JEnable individual bit setting/clearing
|* Edge capture register
Edge Type:
[~ Interrupt
RQ Type:
Level: Interrupt CPU when any unmasked 1/O pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled
|~ Test bench wiring
Drive inputs to field.:

Figure 18: Parallel 10 Configuration Panel for Seven-Segment Display Outputs

You have completed adding the components that make up your Platform Designer system.
Next you will rename the components in the design with names that are easy to remember.

1.5: Connecting the System Components Together
0 In the system contents tab, right click on c1k_9, select rename, and type in clk.
[Select the nios2_gen_2_0 component, select rename and type in cpu.

O Similarly, rename the rest of the components as follows:

» onchip_memory
« jtag_uart

» button

e led

» switch

* hexo

16

Double check to make sure you've selected the correct PIO before renaming. For example, the
button and switch components are both inputs but with different widths, and the LED is an
output. Incorrectly naming a component could lead to errors when compiling!

Renaming the components will make these components’ names easy to remember and ref-
erence in future steps. When you finish, your system contents panel should look like Figure 19.

It is important that your names match these exactly, or your code may not compile!

2 Platform Designer @\ D 1ts\Qsys_workshop_f DE10_Lite r - X

File Edit System ate View Tools Help

P Catalog % | _ of o1|| §= System Contents 3% | AddressMap % | Interconnect Requirements -4

~ W system: unsaved Path: hexo

o
2
5

Exort Clock. Base End RQ Tags Opcode Name

Cin_r Rese
ok (Clock Output ck
ok _reset Reset Output

Har M BxaE+
9

ek 1R0 0 1RO 31

ekl 0x0800 oxozese

reset
avalon_jtag_slave

B irg
New... | | Edit. + Add..)
ok

G| Device Family 53 _oo
red [unsaved.gsys*]

14 Errors, 10 Wamings Generate HDL... || Finish

Figure 19: System Content Connections Starting Panel

The next step consists of making the appropriate connections between the components within
Platform Designer.

O Highlight the clock output coming out of the c1k pin by clicking on the text that says c1k
above the clk_reset description. When first selected, it will be a gray color.

O Make connections between the c1k component and the clk inputs of each of the other
components by clicking on the small open circles on the lines that intersecting with the
other components. You should see something like Figure 20 on the following page.

17

2 Platform Designer - @\ D 15\Qsys_workshopf DET0_Lite - o x
File Edit System Generate View Tools Help
‘m o o[$2 system contents. :z\ Address Map 5% | Interconnect Requirements 5% _ o
o < & % [+ W system: unsaved Path: i.ck
Project * Use Connections Name Description Export Clock Base End RQ Tags Opcode Name
™ New Component...]
Libra X
& Interface Protocols =
E-PCI Express
= QSYS Example Designs =
= Processors and Peripherals .
=+peripherals
. x reset set Input [kl
data_master |Avalon Memory Mapped Master dk]
instruction_master |Avalon Memory Mapped Master k]
irq Iterrupt Receer ak] R0 of 1m0 31|
debug_reset_requ... Reset Output (dK]
debug_mem _siave |Avalon Memory Mapped Slave dk] 0x0800 oxozzs
custom_instructo... Custom Instruction Master
& onchip_memory (0n-Chip Memory (RAM or ROM)
a (Clock 1nput il
Bl |Avalon Memory Mapped Siave dka)
resett Reset Input k]
& jtag_uart TAG UART
dk lock Input
reset set In dg
avalon_ftag_siave |Avalon Memory Mapped Slave (dk]
irg it [dk]
New... | [Edit.. + Add... SR IO (Perallel 0
dk Clock Input ak
"~ ierai Device Family £ oo reset set Tnput (k]
s [Avelon Memory Mapped Siave ak]
8 ~ external_connection |Conduit
led P10 (Paralil 1/0)
dk Clock Input ak
reset Reset In dk
s |Avalon Memory Mapped Siave ak]
external_connection |Conduit
hexd PIO (Paralll 1/0)
(5=« data_master dk lock Input ik
[#-#= debug_mem_slave reset Reset Input [clk)
(5} debug_reset_request s [Avalon Memory Mapped Siave ak]
B3 nucton master external_connection |Conduit
410 reset
-4 dodk_bridge
= oqu -4t ¥ ¥ current fiiter:
3 reset_bridge
& Comnéctions [T Messages 1| - oo
o he
Ee- Type. Path Message '
i - el comacion o s Errore n
[© |unsaved.opu [Reset stave Is not specified. Please select the reset siave
St unsaved.cpu Exception slave is not specfied. Please select the exception slave
o opon-Jregslove unsaved.cpu Cpu.reset must be connected to a reset source
- unsaved.onchip_memory _|onchip_memory.resetl must be connected to a reset source
e reset unsaved jtag_vart [jtag_uart-veset must be connected to a rasat source "
-k vl >
8 Errors, 9 Warnings Generate HOL... | | Finish

Figure 20: System Contents after Connecting the Clock

[0 Perform the same operation to connect the clk_reset from the clock component to the

reset signals on the other components. At this stage, your design should look like Figure

21 below. (Color-coded for clarity.)

2 Platform Designer - @\ D 15\Qsys_workshopf 10.Lite.r - o x
File Edit System Generate View Tools Help
S FCatlog of || 5 System Contents 5% Adress Map 5% | Interconnect Requirements 2 _oo
I tem: unsoved _Path: cl.ck_reset
A pio X & W sys r
Project * Use Connections Name Description Export Clock Base End RQ Tags Opcode Name
W New Component... .]
ary x
= Interface Protocols =
5PCI Express
5SYS Example Designs =
Rty N click to export
= Processors and Peripherals o
5 Peripherals
4710 arolel 10 x reset et Input tak
doto_master | Avalon Memory Mapped Master ak]
instruction_master | Avalon Memory Mapped Master (k]
irq Interrupt Receiver dk] R0 of 1m0 31|
debug_reset_requ... Reset Output ek
debug_mem _siave |Avalon Memory Mapped Slave] ox0800 oxoeee
custom_instructo...Custom Instruction Master
& onchip_memory (On-Chip Memory (RAM or ROM)
dia Clock Input e
st |Avalon Memory Mapped Slave eka)
resett Reset Input ki
& jtag_uart [TAG UART
dk lock Input
reset set In e
avolon _jtag_siave |Avalon Memory Mapped Slove ak]
irq nte]
New... | | Ed.. + Add... SR 0 (perallel Y0
dk Clock Input ok
o reset Reset Input ekl
= s |Avalon Memry Mapped Slove k]
external_connection |Conduit
led PIO (Paralil 1/0)
ak Clock Input e
reset Reset Input (k]
s |Avalon Memory Mapped Slave e
H : :“;"L;’“"“"‘J“"ge’ ‘external_connection |Conduit
(== dato_master hexo PIO (Paralil 1/0)
B, debug mem s & ook put
= etracion e reset Reset put e
By s |Avalon Memory Mapped Slave el
- reset external_connection |Conduit
(5 dock_bridge
o qu
(-5 reset_bridge ¥ W Current fiter:
(£} Connections L ANARIC e e
LY T Ve _ool
(2)-9= external_connection
e e Path Message i)
(e s1 2 Ermors ~
peoert unsaved.cpu Reset slave Is not speciied. Please select the rese siove
o opon-Jregshove unsaved.cpu Exception slave i not specifed. Please select the exception siave
(e irg 5 Warnings
B st . |unsaved.button button.external_connection must be exported, o connected to & matdhing candu.
T Ee ok unsaved.ed led.external_connection must be exported, or connected to a matching condut. v
(£} 9= external_connection vl >
2Ermors, 9 Warnings Generate HDL... | | Finish

Figure 21: clk and clk_reset Connected in Platform Designer

O Connect the cpu.data_master to the slaves. Make the connections between the:

» cpu.data_master and the s1 connection of the onchip_memory

18

» cpu.data_master and the avalon_jtag_slave on the UART component,
» cpu.data_master and the s1 port on the button component,

» cpu.data_master and the s1 port on the switch component

» cpu.data_master and the s1 port of the led component,

» cpu.data_master and the s1 port on the hexO component

» cpu.instruction_master and the s1 port of the onchip_memory

O instruction_masteris by default connected to debug_mem_slave. Also, the instruction_master

needs to be connected to the onchip_memory’s s1 port.

The instruction_master signal from the cpu component does not need to be connected
to each slave component as it only needs access to memory that contains the software exe-
cutable.

Figure 22 below shows the Platform Designer system with the cpu.data_master signal and
cpu.instruction_master signal connected to the other components in the proper locations.
(Color-coded for clarity.)

2 Platform Designer - @\ bl 1ts\Qsys_workshop f DE10_Lite s - o X
File Edit System Generate View Tools Help

P catalog — of 0|35 system contents 52 | adaressmap ¢ | nterconne ct Requirement s 0 =

L pio x| &¥ =

Project
]

W System: unsoved Path: cpu.data_master

Cock Base End RQ Tags Opcode Hame

RN BT

ped Master Double-clck to export [d

Double-click to export [d

TTe

0x0000 0%0007

TTE

0x0000 ox000¢

Bl

lemory Mapped Slave [l |- oxoooo |oxoo0r

el /0)
t

K]
lemory Mapped Slave [l |- oxoooo |oxooor

12 Errors, 4 Warnings Generate HDL... | | Finish

Figure 22: clk and clk_reset Connected in Platform Designer
Make sure that the instruction_master signal from the cpu componentis connected
to the s1 slave of the onchip_memory.

0 The next connections to make are the processor interrupt request (IRQ) signals. Make
this connection as shown in Figure 23 by clicking on the empty bubble. We will use the
default setting for the IRQ number.

19

O The UART can drive interrupts, and hence needs to be wired to the cpu processor inter-
rupt lines.

2 Platform Designer - d.qsys* (CAL D 1ts\Qsys_workshop DE10_Lite. - X

File Edit System Generate View Tools Help

P Catalog & _ of 0|5 System Contents 52 | Address Map 2 | Interconnect Requirements 5%)

X & “ [« W system: unsaved Path: cpu.irq

e Connections Name
=] 8 dk

Export Cock Base end RQ Tags Opcode Name

Har M Bl X+

0x0800 oxozss

0x0000 loxersr

T5e

0x0000 lox0007

T

0x0000 loxo00s

clk] 0x0000 0x000f

12 Errors, 3 Warnings. Generate HDL... | | Finish

Figure 23: System Contents After Interrupt Connections

Now that the connections are made, we need to add the other five seven-segment displays
(as there are six of them in total on the board).

O Select hex9, right-clicking, and select Duplicate. Alternatively, you can click on hex@ and
press ctrl-D to duplicate the module.

0 Once you have six of them (0-5), rename the new ones so they form the following list
(pictured in Figure 24): hex®, hex1, hex2, hex3, hex4, hex5.

[In case the connections were not kept when duplicating the new P1Os, be sure to connect:

» clk from the clock component to the clock signal of each hex component
« clk_reset from the clock component to reset of the hex component

« cpu.data_master from the cpu component to s1 of each hex component

0 Once you have done this for all of the six hex PIOs, your systems contents panel should
mirror Figure 24 on the following page.

20

Jse Connections Name Description Export Clock Base End IRQ Tags
8 ck_0 (Clock Source
=2 dk_in Clock Input = 3 exported
=g dk_in_reset Reset Input reset
e E— dk Clock Qutput dk_0
dk_reset Reset Output
B5 cpu MNios 11 Processor
dk Clock Input cik_o
+ reset Reset Input [cik]
data_master Avalon Memaory Mapped Master [=13]
instruction_master |Avalon Memory Mapped Master [cik]
——}| irg Interrupt Receiver [clk] IRQ O IRQ 31F—
debug_reset_requ... Reset Qutput [cdk]
L debug_mem_slave |Avalon Memory Mapped Slave [clk] & 0x0000_0000 0x0000_07£E
custom_instructio... |Custom Instruction Master
B onchip_memory |On-Chip Memory (RAM or ROM)
dk1 Clock Input ok_0
L 51 Avalon Memory Mapped Slave [clk1] 0x0002_0000 0x0002_ffff
+ resetl Reset Input [ck1]
B jtag_uart ITAG UART
— > dk Clock Input clk_0
* reset Reset Input [clk]
+ avalon_jtag_slave |Avalon Memory Mapped Slave [clk] 0x0000_0890 0x0000_0897
irg Interrupt Sender [clk] >—ﬁ
B button PIO (Parallel 1/0)
dk Clock Input cik_0
* reset Reset Input [clk]
sl Avalon Memory Mapped Slave [cik] 0x0000_0880 0x0000_088f
= external_connection (Conduit button_external_co...
B led FIO (Parallel /0)
dk ‘Clock Input clk_0
* 4 reset Reset Input [clk]
4 > sl Avalon Memary Mapped Slave [chk] 0x0000_0870 Ox0000_0BTL
< external_connection Conduit led_external_connec...
B hex0 FIO (Parallel 1/0)
dk Clock Input ck_0
* reset Reset Input [clk]
st Avalon Memary Mapped Slave [ctk] 0x0000_0850 0x0000_085£
=g external_connection Conduit hex0_external_conn...
B hex1 FIO (Parallel 1/0)
dk Clock Input cll_0
* > reset Reset Input [clk]
L — sl Avalon Memory Mapped Slave [clk] 0x0000_0860 0x0000_0B6L
< external_connection Conduit hex1_external_conn...
B hex2 PIO (Parallel 1/0)
dk Clock Input cik_0
* 4 resat Reset Input [clk]
+ » sl Avalon Memory Mapped Slave [ck] 0x0000_0840 0x0000_084f
i=s external_connection |Conduit hex2_external_conn...
B hex3 FIO (Parallel /0)
dk Clock Input ok_0
* reset Reset Input [cik]
gl Avalon Memory Mapped Slave [elk] 0x0000_0830 0x0000_083f
A= external_connection |Conduit hex3_external_conn...
B hex4 PO (Parallel 1/0)
dk Clock Input clk_0
* reset Reset Input [cik]
sl Avalon Memory Mapped Slave [clk] 0x0000_0820 0x0000_082f
<1 external_connection |Conduit hex4_external_conn...
B hex5 PO (Parallel 1/0)
dk Clock Input clk_0
. reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0000_0810 0x0000_0B81f
< external_connection (Conduit hex5_external_conn...
B switch P10 (Parallel 1/0)
dk Clock Input clk_0
. reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0000_0800 0x0000_080f
o ewtarnal rannaction |Conduit cwitrh extarnal con

Figure 24: System Contents after Adding All 4 Seven Segment Displays

You have now completed the internal connections for this Nios Il processor based system.
The next step is to make the external connections that connect the Platform Designer based
system to the next higher level in the hierarchy of your FPGA design, or to FPGA device pins
that connect to the PCB.

[Double click on the button, led, switch and hex@-hex5 conduit items under the export
column circled in Figure 25 on the following page. This will bring these ports out of the
Platform Designer component to connect to the top-level design.

Be sure the names of the components and exports match what is in Figure 25 EXACTLY,
or the design may not compile at runtime.

21

1= system Contents 2 | Address Map % | Interconnect Requirements &0
% & W system: nios_setup_v2 Path: jtag_uart
¥ |Use Connections Name Description Export Clock Base End RQ Tag
s jtag
X dk Clock Input k0
&= + reset Reset Input [cik]
= avalon_jtag_slave |Avalon Memory Mapped Slave [clk] 0x0000_0890 0x0000_0897
N L — irg Interrupt Sender (k]
E button FIO (Parallel [/0)
et dk Clock Input ok_D
x + , reset Reset Input [cik]
sl Avalon Memaory Mapped Slave [clk] 0x0000_0880 0x0000_0B&L
< external_connection |Conduit
B led FI0 (Farallel 1/0)
dk Clock Input ok_D
. reset Reset Input [cik]
L 81 Avalon Memory Mapped Slave [clk] 0x0000_0870 0x0000_0BTE
2 external_connection Conduit E_ﬂtemal_ownec.,,
B hexd PIO (Parallel I/O)
dk Clock Input ok_D
* > reset Reset Input [cik]
s1 Avalon Memory Mapped Slave [clk] 0x0000_0850 0x0000_0B5L
< external_connection |Conduit _external_conn...
B hex1 PIO (Parallel /0)
dk Clock Input ok_D
* > reset Reset Input [cik]
T sl Avalon Memory Mapped Slave [clk] 0x0000_0860 0x0000_0B6L
< external_connection |Conduit 1_external_conn...
B hex2 PIO (Parallel [/0)
dk Clock Input clk_D
+ > reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0000_0840 0x0000_084f
% external_connection |Conduit 2_external_conn...
B hex3 FIO (Parallel [f0)
dk Clock Tnput ok_0
* > reset Reset Input s 4]
L sl Avalon Memaory Mapped Slave [clk] 0x0000_0830 0x0000_0B3f
©1 external_connection |Conduit 3_external_conn...
2 hex4 FIO (Parallel [f0)
dk Clock Input
L g reset Reset Input
s1 Avalon Memory Mapped Slave 0x0000_0820 0x0000_082f
= external_connection |Conduit
B hexs PIO (Parallel I/0)
— T T — dk Clock Input
* > reset Reset Input
L sl Avalon Memory Mapped Slave 0x0000_0810 0x0000_0B1f
o external_connection Conduit
B switch FID (Parallel O)
dk Clock Input
* > reset Reset Input
sl Avalon Memory Mapped Slave 0x0000_0800 0x0000_080f
< external connection |Conduit
+ it v W current filter:

Figure 25: System Contents after Exporting PIO Switch and LED

J Next you will need to generate the base addresses for your Platform Designer system.
This is achieved by using clicking on System — Assign Base Addresses.

O Save your Platform Designer system by using File — Save As and pick a name for the
Platform Designer system that you will remember. Note that the lab figures call it nios_setup_v2,
so to avoid confusion you may want to name your file the same. The information is saved
in a.qgsys file.

You should see two error messages in the Message Console of Platform Designer.

3% Messages $3|

Type Path Message
Ll] 2 Errors
@ |nios_setup_v2.nios2e Reset slave is not specified. Please select the reset slawve
0 nios_setup_v2.nios2e Exception slave is not specified. Flease select the exception slawve
@ 1 Info Message
@ nios_setup_v2.switch PIO inputs are not hardwired in test bench. Undefined walues will be read from PIO inputs during simulation

Figure 26: Error Message Prior to Assigning the CPU Memory Location

These error messages have to do with the fact that the Nios2e processor doesn't know where
the software code that handles resets and exceptions is located. This is a straightforward fix.

22

O Double click on the cpu component and select the Vectors tab.
[0 Settheresetvector memoryand exceptionvector memory both toonchip_memory.s1.
« Both the data master and the instruction master form the cpu need to be connected

to the S1 port of the onchip memory for this to work.

« See Figure 27 below for example.

This will set the system to execute from onchip memory at these respective locations upon
reset or interrupt. The two errors that were shown in Figure 26 should now be resolved. If
you don't have the option to select onchip_memory.s1, double check your Platform Designer
connections to the on chip memory S1 port.

Nios Il Processor "
altera_nios2 _gen2

Arithmetic Instructions | MMU and MPU Settings | JTAG Debug | Achvanced Features |

| M ain [Yectors Caches and Memory Interfaces
'~ Reset Vector
Reset wector memaory: onchip_memory.s1 -
Reset wector offset: .0x00000000 -
Reset wector: 000004000

'~ Exception Vector

Exception vector memaory. ohchip_memory.s1 -
Exception wvector offset: Ox00000020
Exception vector 0x00004020

~ Fast TLE Miss Exception Vector
Fast TLB Miss Exception wector memory.

Fast TLE Miss Exception wector offset:
Fast TLB Miss Exception wector, Ox00000000

Figure 27: Assign Vectors in the Nios Il Parameters Panel

[J Save your design once again. Note that by saving, you still have not generated the files
that you need for Quartus compilation or with the Eclipse SBT.

O Click on the button Generate HDL. A screen like Figure 28 should appear.
[J Click Generate on the panel that appears.

O When the file generation is complete, click Finish to exit the Platform Designer window.

23

« Generation <@sj-swcf5690-011> ml 4

[Synthesis |

Synthesis files are used to compile the system in a Quartus |l project.

Create HOL design files for synthesis: =

[] Create timing and resource estimates for third-party EDA synthesis toals.

Create block symbol file { bsf)

[simulation

The simulation model contains generated HOL files for the simulatar, and may include simulation-only features.

Create simulation model: Maone :

[Allow mixed-languadge simulation

Enahle this if wour simulator supports mixed-language simulation.

[~ output Directory |
Path: [fhomeyllandis /TEMP devkit_hello_world/nios_setup_v2 I

Generate || Cancel

Figure 28: HDL Generation Panel

Congratulations! This completes the Platform Designer section of the lab.

Lab 2: Building the Top Level Design

The next step is binding together your Platform Designer system with Verilog code.

CLOCK_50
CPU_RESETn
KEY LEDR[9:0] .
HEXO0[6:0]
TCK hello_world_lab sy >)
T™MS HEX2[6:0] >
ITAG > Seven
DI HEX3[6:0] . — Segment
Joo HEX4[6:0] ; Displays
HEX5[6:0] >

Figure 29: Block Diagram of hello_world_lab Design

Quartus should be open. Bring that to the front of your screen. Note that for this design there
is a clock, reset, push button inputs, switch inputs, LED outputs, six HEX outputs (the seven-

24

segment displays), and a JTAG UART. The JTAG UART pins are hard wired into the FPGA so
you don't need to add them in your Verilog source file. The 4 pins: TCLK, TDI, TMS and TDO
that constitute a 4 wire JTAG interface are at a fixed location in your FPGA and they don't need
to be added to your Verilog source file. Only pins that are synthesized from your RTL source
code need to be specified.

[0 The top-level entity is in a file called DE10_LITE_Golden_Top if you are using a DE-10
Lite development kit. If using DEO-CV, it is called DEO_CV_Golden_Top.

Golden top is a naming convention that Intel FPGA often uses to designate the connections
between the FPGA and all of the external components on the development board. This file is
generally provided by the manufacturer of the development board, but we provide this code
as part of the Quartus Archive (.qar) file for this course. You can see it by double clicking on
file under the Project Navigator section.

Project Navigator v Hierarchy >0 ng x

Entity:lnstance

% MAX 10: 10M50DAF484C6GES
DE10_LITE_Golden_Top ®

Figure 30: Project Navigator View of Golden Top File

The code connects the pushbutton inputs to the LED outputs in software. Keep in mind that
the clock, reset, push button, and LED pin names need to reflect the names for the Develop-

ment Kit.

If you were wondering how to hook up the nios_setup_v2 module yourself, you can check

nios_setup_v2_inst.v, which was auto-generated from nios_setup_v2.qsys inside the nios_setup_v2

directory of your project. Open this file and you see how to instantiate the Platform Designer
system. The contents of this file are shown in Figure 31.

25

nios_setup_v2 ul (
.clk_clk (MAX10_CLK1_50), //clk.clk

. led_external_connection_export (ledFromNios[2:0]), //led_external_connection.export //CHANGED TO LEDR
.reset_reset_n (1'bl), //reset.reset_n

.button_external_connection_export (KEY[1:0]1), ‘button_external_connection.export
.switch_external_connection_export (SW[9:01), //switch_external_connection.export

.hex0_external_connection_export (HEX0),

.hex1l_external_connection_export (HEX1),

.hex2_external_connection_export (HEX2), //hex2_external_connection.export

.hex3_external_connection_export (HEX3), ‘hex3_external_connection.export

.hexd_external_connection_export (HEX4), //hexd4_external_connection.export

.hex5_external_connection_export (HEX5) //hex5_external_connection.export
)3

‘hex0_external_connection. export
‘hex1_external_connection. export

//uncomment the line below by deleting the "//"
lassign LEDR[2] = Sw[2];

//ignore what is below here

wire [9:0] ledFromNios;

assign LEDR[1:0] = ledFromNios[1:0];
assign LEDR[2:3] = ledFromNios[9:3];
assign HEXO['bl;
assign HEX1[7 !
assign HEX2[
assign HEX3[7
assign HEX4[7
assign HEXS[

endmodule

—

1
1
s

PO TR Y TR P PR

Figure 31: Contents of nios_setup_v2_instv

We need to specify the top-level entity of our project and add the Verilog code generated by
the Platform Designer system we just created to the project.

O In the top file (DE10_LITE_Golden_Top or DEO_CV_Golden_Top.v) uncomment line 88
by deleting the “//" at the beginning of the line.

« By uncommenting this line, we directly drive led 2 on the board with switch 2 through
the FPGA hardware. No software is required for this led to operate.

O In the Quartus main window, go to Project — Add/Remove Files.
0 Add the nios_setup_v2.qip file. (You can also just add the nios_setup_v2.gsys file.)

» The nios_setup_v2.qip file should be found under nios_setup_v2 — Synthesis di-
rectory in your project.

« You will need to change the filter to display All files if you cannot see it.

The .qip file contains the information for the processor system that we created in the last step.
The .v file connects the Platform Designer system we made to the inputs and outputs of our
board.

O Click Apply once you have added the file.

See Figure 32 for what your Add/Remove Files window should look like. (There may be an
extra .sdc file in the list. This is fine.)

26

7 Settings - top - O X

Category: Device/Board.
General I —

Files

Select the design files you want to include in the project. Click Add All to add all design files in the project directory to
Libraries the project.
v IP Settings
IP Catalog Search Locations File name: | | Add
Design Templates
~ Operating Settings and Conditions
Voltage File Name Type Library Design Entry/Synthesis | pemave

[« %[pgd au

Temperature DE10_LITE_Golden_Topv Verilog HDL File <None>
Compilation Process Settings

Incremental Compilation
~ EDA Tool Settings

Design Entry/Synthesis Properties

Simulation

Board-Level

<

> nios_setup_v2/synthesis/nios_setup_v2.gip IP Variation File (.qip) <None> e

Down

~ Compiler Settings
VHDL Input
Verilog HDL Input
Default Parameters
TimeQuest Timing Analyzer
Assembler
Design Assistant
Signal Tap Logic Analyzer
Logic Analyzer Interface
Power Analyzer Settings
SSN Analyzer

W Buy Software OK Cancel Apply Help

Figure 32: Quartus Add/Remove Files Pane

Almost there! We have pre-included and set up the pin assignments for the development kit
for you so you do not have to manually set dozens of pins using the pin planner. These com-
mands handle routing the pins and voltage levels so they can be easily transferred between
projects that use the same board.

[J To view the pin assignments, go to Assignments — Assignment Editor.

@ DE10_UTE Golden Topv £} & CompilaonReport-top £ & Assignment Editor a
<<new>> ¥ [/ Filter on node names: |* V‘ Category; All ©
tatL From To Assignment Name Value Enabled Entity Comment Tag ~

85 _?3 HEXO0[0] 1/O Standard 33-VLVTTL Yes DE10.._Top

86 + [% HEXO[T] 1/O Standard 33VLVITL Yes DE10..._Top

87 v [N % HEX0[2] 1/0 Standard 33-VLVITL Yes DE10..._Top

88 _93 HEXO[3] 1/O Standard 33-VLVTTL Yes DE10.._Top

89 _?3 HEXO0[4] 1/O Standard 33-VLVTTL Yes

90 v [% HEXO[S] 1/0 Standard 33VLVITL Yes

91 ¢ _% HEXO0[6] 1/O Standard 3.3-VLVITL Yes

92 _?3 HEXO0[7] 1/O Standard 33-VLVTTL Yes

0z v [% HEX1M0] 1/0 Standard 33VLVITL Yes

o4 v [N % HEX(1] 1/0 Standard IFVLVITL Yes

95 _93 HEX1[2] 1/O Standard 33V LVITL Yes

96 _?3 HEX1[3] 1/O Standard 33-VLVTTL Yes

97 v [% HEX14] 1/0 Standard 33VLVITL Yes

98 _% HEX1[5] 1/O Standard 3.3-VLVITL Yes

9g _?3 HEX1[6] 1/O Standard 33-VLVTTL Yes

100 v [% HEX1[7] 1/0 Standard 33VLVITL Yes

101 v [N & HEx2[0] 1/0 Standard IFVLVITL Yes

102 ¢ _93 HEX2[1] 1/O Standard 33-VLVTTL Yes

103 v [& HEX2[2] 1/0 Standard 33VLVITL Yes

104 v [% HEX2[3] 1/0 Standard 33VLVITL Yes

105 ¢ _% HEX2[4] 1/O Standard 3.3-VLVITL Yes

106 _?3 HEX2[5] /O Standard 33-VLVTTL Yes

107 v [% HEX2[6] 1/0 Standard 33VLVITL Yes

« I % HEx2(71 /0 Standard 3.3-VLVITL Yes hd

108
T

Figure 33: Quartus Assignment Editor Window

27

Figure 33 above is what the Assighment Editor window should look like. After compiling your
design, the blue diamonds with question marks inside should change to show whether those

pins are inputs or outputs.

Now you can compile your design which will run Analysis/Synthesis, Fitter (place and route
in FPGA terminology), Assembler (generate programming image) and TimeQuest (the static

timing analyzer).

O Click on the play button as shown in Figure 34.

File Edit View Project Assignments Processing Tools Window Help

D" hello_world_lab - S EE D EF' K QAOER ©

Figure 34: Compilation Button on Quartus Toolbar

Note that some warnings and information messages come up in the bottom window. You can
filter by message level. The errors are filtered with the J button, critical warnings with
the j button, warnings with the A button, and informational messages with the .d

button. You cannot proceed if you have errors. In this case, there are only critical and standard
warnings, primarily because we did not add timing constraints to this project. Due to the sim-
plicity of this design and low frequency, it's okay to start without timing constraints. Consult
other Intel FPGA online training courses for instructions on how to add timing constraints to

your design.
Congratulations, your FPGA hardware design is now complete!

Now we will create software that will run on the board and take advantage of the Nios Il pro-

cessor that we just configured.

28

PART 2: SOFTWARE DESIGN

Lab 1: Creating the Software for the “Hello World"” design

Should you choose to start directly in the Software Design section and skip the Hardware De-
sign section, consult with your lab facilitator to get these two files: nios_setup_v2.sopcinfo
and top.sof as if you generated them from the Hardware Design lab. You will be able to com-
plete all subsequent steps with these two files.

The NIOS Software Build Tools for Eclipse are included as part of Quartus. These tools will

help manage creation of the application software and Board Support Package (BSP).

O Launch Tools — NIOS Il Software Build Tools for Eclipse. You can use the default loca-

tion that Eclipse picks for you.

Workspace Launcher <@sj-swcf5690-011> X

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: |/home/llandis/TEMP/devkit_hello_world/Workspace

| -] ‘ Browse...

[] Use this as the default and do not ask again

[cancer ||

oK

Figure 35: Initial Workspace Setup

O Click OK in the Workspace launcher. Next, the Eclipse SBT will launch.

= Nios Il - Eclipse

File Edit Navigate Search Project Nios Il Run Window Help

s (G g

L Project Explorer 71 7

[3 Project. New

£ _Nios Il Application & Import..

I [Nios Il Application and BSP from Template
9 Nios Il Board Support Package
[Nios Il Library

& Refresh

£3 Other. Ctrl+N

0 items selected

2 Export..

v ivEY HBYOTYLEY O T - -

FS

[Problems :
0 items

Description

<

Quick Access 5| [@ Nios Il
5 Eoulines ~ 8

An outline is not
available.

Resource Path

Figure 36: Creating the Initial Project in the Eclipse SBT

29

O Right click in the area called Project Explorer and select New — Nios Il Application and
BSP from Template.

The BSP is the “Board Support Package” that contains the drivers for things like translating
printf C commands to the appropriate instructions to write to the terminal.
Next you will see a panel that requests information to setup your design.

O Navigate to your working directory and click on the .sopcinfo file. The .sopcinfo file
informs Eclipse on what your Platform Designer system contains.

O Click OK.

Nios Il Software Examples

Please specify a .sopcinfo file

Target hardware information

SOPC Information File name: [

¢ <=@sj-swcf5690-011>

E]I[a llandis " TEMP Hdevkit_hello_world

Location: Imos_setup_\rz.sopcmfo

Places Name | Maodified | E
@ llandis I output_files Yesterday
& Desktop [patch 03/03/15
© File System & platform 03/03/15
[J simulation 03/03/15 |||
[J software 03/04/15
[nios_setup.sopcinfo 02/28/15
O nies_setup_ll.sopcinfo Friday
g

I SOPC Information File (*.sopcinfo) %

@

Figure 37: Navigating to the .sopcinfo File

[J Fillin the Project name, call it hello_world_sw.

O Next you will be asked to pick a template design. Select the Hello World Small” appli-
cation template. This template writes “Hello from Nios II" to the screen.

» Make sure to pick Hello World Small and not Hello World or you will not have
enough memory in your FPGA design to store the program executable.

O Click Finish.

We will now make some modifications to the code to display the results of the pushbuttons
(KEY1-0) on LEDs 3-2.

30

-

Nios Il Application and BSP from Template <@

Nios Il Software Examples

Create a new application and board support package based on a software example
template

Target hardware information

SOPC Information File name: [J.'CycloneVIHeIluWurldTestlr\los_setup_vZ‘sopclnfuJ E]

CPU name: ‘=:pu =!‘

Application project

Project name: lhelln_wund_sw

Use default location

Project location:

Project template

Templates Template description .
Hello World +| |Hello World Small prints ‘Hello from Nios II' to =
STDOUT. The project occupies the smallest

Hello World Small memory footprint possible for a hello world

Memory Test application.
ESINIOFYGECSITIAN is example runs with or without the MicroC/OS-1I
Simple Socket Server RTOS and requires an STDOUT device in your
system's hardware.

Simple Socket Server (F

or details _click Finish to create the nroiect and

@ [Next > H Cancel H Finish |

Figure 38: Completing the Nios Il Software Examples Setup Screen

O Click the right arrow next to hello_world_sw. It will show the contents of your project.
Double-click hello_world_small.c.

Nios Il - hello_world_sw/hello_world_small.c - Eclipse <@sj-swcf5690-011>

FEile Edit Source Refactor Navigate Search Project MNios!l Run Window Help

CE SNCRRER R R - R R C A R e I R = I R T ==
l =] I@Viusu]
[z5 Project Explorer 12 = B [g hello_world_small.c 52 = il 5= Outline 52 = g
5% - @®| * "Small Hello World" example. [] B

Bl R e

= £ hello_world_sw

Pl Includes

#include "sys/alt_stdio.h” -

~int main() o sys/alt_stdio.h
P = system

{ e main{) - int
5 ﬁhel\oiwor\dismall.c alt_putstr("Hello from Nips IT!'\n"});

create-this-app

/* Event loop never exits. */
| @ Makefile while (1);

readme.txt return 0;
P =5 hello_world_sw_bsp [nios_setup v2] }

(I Il [

Problems ¢ Tasks El Console E Properties %

Property Value

Writable Smart Insert 2:1

Figure 39: Eclipse Window of “hello_world_small.c”

31

Note the command alt_putstr to write text to the terminal. This is part of the Hardware Ab-
straction Layer (HAL) set of software functions. Note that the alt_putstr command is used
versus a standard C printf function because the code space is more compact using the HAL
commands. Code using HAL functions without an operating system is referred to as “bare
metal” programming. A complete list of these functions can be found in the Nios Il Software
Developer's Handbook: https://www.intel.com/content/www/us/en/programmable/products/

processors/support.html.

Next you need to add a library declaration, define integer switch_datain, and a few HAL func-
tions to connect the LEDs to the Push Buttons.

0 Drag and drop the file DE_hello_world.c (found in the subfolder C_CODE) into Eclipse
Project Explorer tab under the hello_world_small_sw project folder.

« If you cannot drag and drop, copy and replace the code from the DE_hello_world.c
into the hello_world_small.c and skip step 11.

O Delete the pre-made hello_world_small.cfile in your hello_world_sw folderin the Eclipse
Project Explorer. This can be done by right clicking on hello_world_small.c and select-
ing Delete from the drop down menu that appears.

The code may appear somewhat cryptic, so we will now take the time to explain what the vari-
ous linesdo. IORD_INTEL PSG_AVALON_PIO_DATA (Location) gets the data from the specified
Location (given in the system.h file under the hello_world_sw_bsp folder) and reads it into a
variable. Calling the function with two parameters, asin: IOWR_INTEL PSG_AVALON_PIO_DATA
(Location, Value) writes the numeric Value to the given Location. We are using this function to
read the data from the push buttons and then write this value to LEDs.

Note the use of the variables BUTTON_BASE and LED_BASE. These variables are created by
importing the information from the .sopcinfo file. You can find defined variables in the sys-
tem.h file under the hello_world_sw_bsp project. Double click on system.h file and inspect the
defined variable names for BUTTON_BASE and LED_BASE. These must match your hello_world_small.c

code.

O Click the save icon.
O Now that we have written our code, click Project — Build All.

O Once the build completes, you should observe an .elf file (executable load file) under the
hello_world_sw project. If the .elf file does not exist, the project did not build properly.
Inspect the problems tab on the bottom of the Eclipse SBT and determine if there are
syntax problems, correct, and rerun Build All. Typical problems include missing semi-
colons and mismatched brackets.

32

https://www.intel.com/content/www/us/en/programmable/products/processors/support.html
https://www.intel.com/content/www/us/en/programmable/products/processors/support.html

File Edit Navigate Search Projec
- | s i G = B9 * |cf »

Project Explorer &2 =g

~ == hello_world_sw ~
s Includes
& obj
= svstemn

I hello world small.c

#? hello_world_sw.elf - [al

create-this-app
hello_world_sw.map
hello_world_sw.objdun
& Makefile
& readme.txt

v & hello_world_sw_bsp [r

Figure 40: Window View of “hello_world_sw.elf"

Lab 2: Downloading the Hardware Image to the Development Kit

If you have never used the USB blaster before, you will need to follow these steps to
update your USB blaster’s driver software. If you have used the USB blaster before on
your computer, you may skip this portion of the manual.

To work with the Max10 /Cyclone V in the context of this lab, you will need to connect a USB
cable connecting the kit to a host PC. The USB blaster utilizes circuitry that formats the image
into a data stream that downloads from the PC to FPGA.

To install the USB Blaster, follow these steps:

O To begin, make sure you connect your board to your computer via a USB cable. Depend-
ing on your board model, you may need to plug your board into power.

O Hit the windows key and type Device Manager.
O Click on the Device Manager tile that appears.

0 Navigate to the Other Devices section of the device manager and expand the section.

33

% Device Manager i O X
File Action View Help
s | m Hml.

» i Human Interface Devices A
*m |DE ATA/ATAPI controllers
3 Imaging devices
E=2 Keyboards
L] Memory technology devices

ﬂ Mice and other pointing devices
» [Monitors
v [Network adapters
@ Bluetooth Device (Personal Area Network) #2
? Bluetooth Device (RFCOMM Protocol TDI) 22
(¥ Broadcom NetXtreme Gigabit Ethernet
%' Cisco AnyConnect Secure Mobility Client Virtual Miniport Adapter for Windows x64
7 Intel(R) Dual Band Wireless-AC 8260 #3
? Intel(R) Ethernet Connection (2) 1215-LM
. @ NoMachine USB Host Adapter
v R Other devices

Ié USB-Blaster

A AT

Figure 41: Device Manager Showing USB Blaster Drivers Not Installed

O Right click the USB-Blaster device and select Update Driver Softwar”.

O Choose to browse your computer for driver software.

How do you want to search for driver software?

— Search automatically for updated driver software

Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation
settings.

— Browse my computer for driver software
Locate and install driver software manually.

Cancel

O ———

Figure 42: Selecting to Browse for Driver Software Directory

O Navigate to the path shown in Figure 42. This should be the path where you have in-
stalled Quartus on your computer.

34

Browse for driver software on your computer

Search for driver software in this location:

Browse...

Include subfolders

—> Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and a
driver software in the same category as the device.

Next Cancel i

Figure 43: Directory Containing USB Blaster Drivers

Once you have the proper file path selected, click on Next and the driver for the USB
Blaster should be installed.

With the USB blaster drivers properly installed, launch the Programmer by clicking Tools

— Programmer.

Next, you need to download what is called a .sof file or SRAM object file. This is the pro-
gramming image file that gets downloaded in the FPGA. The default location is <work-

ing_directory>/output_files.

Right click on the first row <none> under File and click on Change File. Navigate to the

output_files directory and select top.sof.

Click Open.

File Device Checksum Usercode Program/ Verify Blank- Examine Security Erase ISP
Configure Check Bit CLAME

output_files/hello... 10M50DAF48... 003DB685 003DB685

”

Figure 44: Program/Configure Checkbox

In the first row under Program/Configure click in the check box as shown in Figure 44

above.

Click on Hardware Setup, located in the top left corner of the programmer window. In
the currently selected hardware section, click on the drop-down menu and select the
USB Blaster.

35

O

» Programmer - C:/Users/dustinhe/Documents/teachingVerilogProjects/de10lite_qgsys_workshop/hello_world_lab_restored/hello_wor. b [m] x

File Edit View Processing Tools window Help

Search altera.
& Hardware Setup... | ([UEzR:Em0g (05 =0 Mode: |JTAG e Progress: 100% (Successful)
[Enable real-time ISP 1o allow background programming when available
[p— File Device Checksum Usercode Program/ Verify Blank- Examine Security Erase ISP
Configure Check Bit CLAMF
% Stop output_files/hello... 10M50DAF48... 003DBE85 003DB685

% Auto Detec
Delete

™ Add File...

'* Change File

4 Save File

* Add Device 4>§ »

10M50DAFA84ES
TDO

Figure 45: Programmer Progress Successful

Click Start, located on the left of the programmer window. When programming is com-
plete, the progress meter should read 100% (Successful).

Now that the FPGA is programmed the hardware is operating. However, we have not pro-

grammed the software for the NIOS CPU yet. To demonstrate the hardware is functioning,

even while the NIOS processor is not, press the switch SW2 to on (towards the LEDS). You

should see only one LED light up. Follow steps 15-18 below then try pressing the keys again.

Note how the hardware driven LED does not need the software executable file .elf to operate.

Now it is time to download the .elf (software executable) into the Nios lle processor.

]

Return to the Eclipse SBT tools. Right click on hello_world_sw and select Run as — Run
Nios Il Hardware. A window should appear as shown below.

Click on the Target Connection tab.

» The connection should indicate that Eclipse has connected to the USB-blaster.
« If the connection is not identified, you can click Refresh Connections.

» You might need to stretch the window wider to see the Refresh Connections button.

Once the connection is made to the USB-Blaster, you should observe something like

Figure 44.

Click Run. If the run button is grayed out but your device shows up under the connec-
tions window, you may need to select Ignore mismatched system ID and Ignore mis-
matched system timestamp.

36

' Run configurations <gsj-slscf26R0-03>

Create, manage, and run conflgurations

The expected Stoeut device Name dees ot match e selected target Dyte sieam device name w
O&E % B 3 - Mame: helio_world_sw Mios Il Hardwara configuration
Y Project | Ji Target Canmection - %5 Debugaer T Common| & Source
[E] Crfc ++ Appiication e =
Processars:
[E] CAZ++ Remate Application Cable Device Dvice 1D Instance 0| Hume Architecture Refrush Cornaciions
Launch Group USE-Blasterll on 51-LLAWDL... R3I0SOCOOL |1 7 Infosz_o Wi psz:3 e
= [Nios Il Hardware TP Yo T—
Cablke Deeice Deevice DV Instunce 0| Wume Wersion
¥ Hios W Hardware v2 (beta)

USE-BlasterIl of 51-LLANDT... 0310500081 |1 & [RLERTET
@ Hios Il ModelSim

(B8 ios Il Mo delSim u2 [heta)

[Disaisle Mios Il Consale' uiew
o SysteniTap cyuartus Prajact File mas o | Usirg defauh <opcirdo & jo files aurracmed from ELE =
Systar |0 checks

[Igrore mismanched system B

lgriors mizmatched system fimesiamp

Deranlo=d

| Doasninad ELF to selected target rysten

|4

Filtar matched % af 9 itemns

i) Clase | Bun

Figure 46: Eclipse SBT Tools after Connection is made to the USB-Blaster

0 Now you have hardware and software downloaded into your board. You should observe
“Hello from Nios II!" printed on the Nios Il Console tab.

P Nios Il Console &
dew_configuration - cable: USB-Blaster on localhost [USB-0] device ID: 1instance ID: 0 name: jtaguart_0
Hell

¥hen you presa Key 0,1 che switching on of cthe LEDs 1a done by sofcware

m Hics II!

Figure 47: "Hello from Nios III" on Nios Il Console Tab

O You can also test the connections between push button and LEDs. Push buttons 0-1
should now turn LEDs 0-1 on when pressed. The pushbuttons and LEDs were connected

through our Platform Designer system and the C code we have running on our develop-
ment kit.

KEY CONCEPTS:

« When you push buttons 0 and 1, LEDs 0 and 1 will light up. This is because of software.

« When you flick switch SW2, LED 2 will light up. This is because of hardware.

Lab 3: Using the Seven Segment Display

One of the nice things about the Niosll processor is that since we have already designed the
hardware, we can now change the software without having to reprogram the FPGA. We will
now program the Nios2 processor to display text on the seven segment displays and make
pushbuttons speed up and slow down the text.

37

[0 Drag and drop the file named DE_seven_segment_display.c into the hello_world_sw
project folder in Eclipse. DE_seven_segment_display.c can be found in the C_CODE
subfolder in the DE10_gsys_workshop folder. If you cannot drag and drop the file,
copy and replace the code from DE_seven_segment_display.c into the .c file already
present and skip the next step.

O Remove the file DE_hello_world.c by right clicking on the file and selecting Delete.
O Right click on the hello_world_sw in the Project Explorer and click on Clean Project.
[0 Whenthe programiisfinished, right click on hello_world_sw again and select Build Project.

0 Once the build completes, the .el) file under the hello_world_sw project should be up-
dated. To check, right click on the .elf file and go to Properties. The time under the “Last
Modified” section should reflect the time the last build was completed.

O Right-click on the hello_world_sw folder in the Project Explorer on the right and select
Run as — Run Nios Il Hardware. This will run the new C program on the Nios2 processor.

O Now a prompt should appear in the console telling you to enter text. Type something
like “Hello World” into the console and press ENTER. The text should appear on the
seven-segment display.

[0 You can control the text in the following manner using the two push buttons:

» Press KEYO to perform multiple functions. The console outputs the current step.

- Press to speed up (hold down to speed up more).

- Press again to speed up more (hold down to speed up more).

- Press again to go even faster (might go so fast all LEDs appear on).
- Press again to slow down.

- Press again to change scroll direction (to the right).

- Press again to flip letters upside-down.

- Press again to make the letters scroll up (or dance)

- Press again to make the letters scroll down (or dance)

- Press again, to clear screen

» Press KEY1 change text. Look at the console for further instructions).

If you are fluentin C, try modifying the program to add functions for some of the other switches.
When modifying, or writing your own program, the variable switch_datain is assigned the value
of the switches.

38

LAB SUMMARY

You now have completed the hardware and software sections of this lab. This includes:

» Loading the Device Kit pin settings into Quartus.

» Using Platform Designer to build a Nios Il based system.

« Instantiating the Platform Designer component into your top level design.
« Add some connections between push buttons, switches and LEDs.

» Compiling your hardware.

« Importing the Nios Il based system into the Eclipse Software Build Tools.
« Building a software project.

» Modifying a software template to perform some simple 10 functions.

« Compiling your software.

« Downloading the hardware image into the development kit.

« Downloading the software executable into the development kits.

Testing the hardware.

Pleasevisithttps://fpgauniversity.intel.comto discover more embedded systems, NIOS,
and software development trainings and reference designs from Intel and our technology
partners.

39

https://fpgauniversity.intel.com

APPENDIX

List of Figures

0 N O O A W N =

W W W W W W W W NN DN DNDDNDDNDNDN NN =22 O A Qa0
N OO o AWM 2 O O 00 N0 WN 2 O 0V 00N WNN - O

Quartus Download Page

Platform Designer DevelopmentFlow
Nios Il Based System Used InThisLab

DE-10Lite.

Selecting Archive Name and Destination Folder for the .qarfile.

Qsys/Platform DesignerMainPanel

IPCatalogTab

Nios Il Gen2 ConfigurationPanel

Platform Designer System ContentsPanel

IP Catalog Search for On-ChipMemory

On-Chip Memory Configuration

Panel,

System Contents with Nios Il and On-Chip Memory

JTAG UART Configuration Panel

Parallel 10 Configuration Panel for Pushbuttons

Parallel 10 Configuration Panel for LED OQutputs

Parallel 10 Configuration for Switch InputPanel

Parallel 10 Configuration Panel for Seven-Segment Display Outputs

System Content Connections StartingPanel

System Contents after Connectingthe Clock

clk and clk_reset Connected in Platform Designer (formerly Qsys)

clk and clk_reset Connected in Platform Designer (formerly Qsys)

System Contents After Interrupt Connections

System Contents after Adding All 4 Seven Segment Displays.

System Contents after Exporting PIO SwitchandLED

Error Message Prior to Assigning the CPU Memory Location

Assign Vectors in the Nios Il ParametersPanel

HDL Generation Panel

Block Diagram of hello_world_labDesign

Project Navigator View of Golden Top File

Contents of nios_setup_v2_instv.

Quartus Add/Remove FilesPane i ittt

Quartus Assignment Editor Window oo

Compilation Button on Quartus Toolbar

Initial Workspace Setup

Creating the Initial Projectin the Eclipse SBT

Navigating to the .sopcinfo File

0 N N O b~

10
11
11
12
13
13
14
15
15
16
17
18
18
19
20
21
22
22
23
24
24
25
26
27
27
28
29
29
30

40

38 Completing the Nios Il Software Examples Setup Screen 31
39 Eclipse Window of “hello_world_small.c” 31
40 Window View of “hello_world _sw.elf” 33
41 Device Manager Showing USB Blaster Drivers Not Installed 34
42 Selecting to Browse for Driver Software Directory 34
43 Directory Containing USB BlasterDrivers oo 35
44 Program/Configure Checkbox 35
45 Programmer Progress Successful o 36
46 Eclipse SBT Tools after Connection is made to the USB-Blaster 37
47 "Hello from Nios Il'"on NiosllConsoleTab 37
List of Tables
1 Resource Files e e 8
2 Revision Control History 42

41

Revision History

DATE

05/01/2015
06/02/2015
11/30/2015
12/02/2015
12/04/2015
03/18/2016
05/10/2016
06/06/2016
03/23/2017
04/03/2017
04/18/2017
10/23/2017
02/15/2018

03/21/2018

04/02/2018

04/08/2018

04/11/2018

04/25/2018

07/06/2018

07/06/2018

08/22/2018

08/08/2019

NAME

L. Landis

L. Landis

l. Rush

S. Meer

l. Rush

K. Kita

J. Xia

P. Mayer

A. Weinstein
A. Weinstein
A. Weinstein
D. Henderson
A. Joshipura

A. Joshipura

A. Joshipura

R. Nevin

A. Joshipura

A. Joshipura

S. Soto

H. Martinez

H. Martinez

R. Nevin

DESCRIPTION

Initial release

Added BeMicro

Added CVE DevKit

Consolidated sections

Updated pinout table

Separated lab by board

Revised for university workshops

Added scrolling text

USB blaster installation

Added CVGX DevKit

Updated .gar files

Port to DE10-Lite

Added location where to unzip files

Added switch in the manual and changed figures for it;
added SW2-LED2 connection

Edited functionality of seven segment display to do all
functions in button O

Fixed switch PIO direction, clarified guidance for “hello
world small” template & instructions to import
DE1OLITE_hello_world.c

Added a single page for different workshop links;
added images of both boards and changed Qsys to
Platform Designer.

Added Intel logo 7 explanation on the links

Fixed System Done code by uncommenting line 88 (for
DE10-Lite) and line 172 (for DEO-CV) in golden_top.v;
fixed the order of components listed in the

beginning of Lab 1.5 and emphasized double
checking components were named properly

Edited seven segment screen code; cleaned up syntax
and added console text for clarity

Transferred from .docx to BTEX; updated figure
numbers and enforced cross referencing; revised minor
grammar issues; formatted according to Intel branding
guidelines

Fixed incorrect URLs and product names

Table 2: Revision Control History

42

	Lab Overview
	Lab Notes
	Design Flow
	Objective of the "Hello World" Lab
	Get Started with Quartus
	Part 1: Hardware Design
	Lab 1: Building Your Platform Designer Based Processor System
	1.1: Adding the Nios II Processor
	1.2: Adding On Chip Memory
	1.3: Adding the JTAG UART Component
	1.4: Adding Parallel IO (PIO)
	1.5: Connecting the System Components Together

	Lab 2: Building the Top Level Design

	Part 2: Software Design
	Lab 1: Creating the Software for the “Hello World” design
	Lab 2: Downloading the Hardware Image to the Development Kit
	Lab 3: Using the Seven Segment Display

	Lab Summary
	Appendix
	List of Figures
	List of Tables
	Revision History

