
EMBEDDED FPGA DESIGN
WITH THE NIOS II PROCESSOR

SHORTENED EDITION

To learn more, visit http://fpgauniversity.intel.com.

© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel

Corporation or its subsidiaries in theU.S. and/or other countries. Intel warrants performance of its FPGAand semiconductor products to current specifications in accordance

with Intel’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability

arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to

obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. Other names and brands

may be claimed as the property of others.

http://fpgauniversity.intel.com

CONTENTS
Lab Overview 2

Lab Notes 3

Design Flow 5

Objective of the ”Hello World” Lab 6

Get Started with Quartus 7

Part 1: Hardware Design 9
Lab 1: Building Your Platform Designer Based Processor System 9

1.1: Adding the JTAG UART Component . 9
1.2: Connecting the System Components Together 10

Lab 2: Building the Top Level Design . 13

Part 2: Software Design 18
Lab 1: Creating the Software for the “Hello World” design 18
Lab 2: Downloading the Hardware Image to the Development Kit 22
Lab 3: Using the Seven Segment Display . 26

Lab Summary 28

Appendix 29
List of Figures . 29
List of Tables . 29
Revision History . 30

1

LAB OVERVIEW
This lab teaches you how to create an embedded system implemented in programmable logic
using the Intel® Nios II processor, sometimes reffered to as a ”soft” processor. The Nios II can
be synthesized on any Intel® FPGA device, and has a built in programmable logic fabric that
can be easily modified to suit an applications’ requirements. Intel® SoC FPGA devices contain
a processor built from standard cells that cannot be changed without redesigning the chip,
and are therefore called a textithard processor system. The Nios II processor is supported by
a rich set of peripherals and intellectual property (IP) blocks built that can be configured and
connected to the processor using the Platform Designer tool within the Intel® Quartus Prime
software suite. Intel also distributes the Nios II Software Build Tools (SBT) within the Quartus
download for use with Eclipse* during software development.

This lab is organized to run on a number of Intel® FPGA development kits. The links to the
other kits can be found in the Design Store as a Design Example and type in “hello” in the
search bar. This lab will show you how to install the development kit pin settings, design the
processor-based hardware system, download it to the development it, and run a simple “Hello
World” software program which displays text on your terminal. The initial section of the lab is
split into a hardware section and a software section.

2

https://fpgacloud.intel.com/devstore/platform/

LAB NOTES
IMPORTANT: PLEASE READ AND FOLLOW THESE GUIDELINES THROUGHOUT THE
LAB OR THE LAB WILL NOT WORK!

• The lab will require you to choose files, components, and other objects. They
must be spelled exactly as directed.

• DO NOT USE SPACES IN THE FILE NAMES OR DIRECTORIES.

• This is necessary for consistency and to ensure that each step works properly in
the lab, when creating your own systems, you can choose your own names if you
use them consistently in your project.

Quartus Prime is Intel FPGA’s design tool suite. It serves a number of functions:

• Design creation through the use of HDL or schematics

• System creation through the Platform Designer graphical interface

• Generation and editing of constraints (timing, pin locations, physical location on die, I/O
voltage levels)

• Synthesis of high level language into an FPGA netlist, formally known as mappin

• FPGA place and route, formally known as fitting

• Generation of design image used to program an FPGA, formally known as assembly

• Timing Analysis

• Download of design image into FPGA hardware, formally known as programming

• Debugging by insertion of debug logic (in-chip logic analyzer)

• Interfacing to third party tools such as simulators

• Launching of Software Build Tools (Eclipse) for Nios II

To download Quartus Prime Lite, follow these instructions:

� Visit this site: https://fpgasoftware.intel.com/?edition=lite.

� Select version 18.1 and your PC’s operating system.

� For the smallest installation and quickest download time, select only the fields shown
on the following page in Figure 1. Under Quartus Prime Lite Edition, select only the
Quartus Prime, uncheckModelSim. Under devices selectMAX 10 FPGA device support.
Uncheck the rest.

3

https://fpgasoftware.intel.com/?edition=lite

Figure 1: Quartus Download Page

� Follow the instructions to activate the Quartus Prime Lite version 18.1 tools on your PC.
No license is required to run the Quartus Lite software.

4

DESIGN FLOW
Unlike system development with hard processors, development with soft processors enables
you to optimize the processor system to your application requirements and use the FPGA to
add the performance and interfaces required by your system. This means that you need to
know how to modify the processor system hardware; this may sound challenging but thanks
to the Platform Designer graphical system design tool this is a relatively easy thing to do as
we will demonstrate in this lab.

Thedesign flowdiagrambelow illustrates howanoverall system is integratedusing the combi-
nation of the Platform Designer system integration tool, Quartus for mapping (aka synthesis),
fitting (aka place and route), and the NIOS II Software Build Tool (SBT) for software develop-
ment.

Figure 2: Platform Designer Development Flow

The above diagram depicts the typical flow for Nios II system design. Hardware System defi-
nition is performed using Platform Designer tool; the resultant HDL (.Qsys) files from the Plat-
form Designer system are used by the Quartus design software to map, fit and download the
hardware image into the FPGA device. Quartus also generates information that describes the
configuration of the system designed in Platform Designer so that the Nios II SBT can be con-
figured to create a software library that matches the hardware system and contains all the
correct peripheral drivers.

5

OBJECTIVE OF THE ”HELLOWORLD” LAB
This lab demonstrates how to use PlatformDesigner tool to design the hardware and software
to print “Hello World” to your screen. This requires a working processor to execute the code,
on-chip memory to store the software executable, and a JTAG UART peripheral to send the
“Hello World” text to a terminal. To make the lab a little bit more interesting and hardware-
centric, we will utilize the push button switches and LEDs to allow interaction with the devel-
opment kit. We will use connections to memory that the processor can access to map the
various switches and buttons on the device to the LEDs and seven-segment display.

The lab hardware is constructedwith the components shown below. Intel utilizes the Platform
Designer network-on-chip interconnect to connect the master and slave devices together. In
the interest of time, you are given a nearly completed NIOS II based system to start. The lab
starting file will omit the JTAG UART which provides connectivity to the keyboard and display.
You will be given detailed instructions on how to connect the JTAG UART to the Avalon bus.

Figure 3: Nios II Based System Used In This Lab

6

GET STARTEDWITH QUARTUS
This lab demonstrates how to use PlatformDesigner tool to design the hardware and software
to print “Hello World” to your screen. This requires a working processor to execute the code.
Follow the instructions below for performing the lab.

� Get the associated .zip folder from the design files you downloaded for this lab. The file,
DE10_Lite_qsys_workshop_semicomplete.zipwill contain the semi-completedproject.

Figure 4: DE-10 Lite

Board . Files .

DE‐10 Lite DE10_Lite_qsys_workshop_semicomplete.zip

Table 1: Resource File

� Unzip the .zip file. Right click on the .zip folder and select Extract All… Browse to the
directory you want your unzipped files to go and press Enter. Within the file there are
two items: C_CODE and DE10_Lite_semicomplete.qar. The lab will not work if you do
not unzip the files!

� Double click on the DE10_Lite_qsys_semicompleted.qar file. If
you have Quartus completely installed, the Quartus software should open the (.qar) file.
(.qar) stands forQuartus Archive File and allows a user to store a project and its related
files in a single (.qar) and then restore the project later. This is done for your convenience
and to make the overall lab time shorter.

� Select a destination folder where you want your project to be restored, by clicking on
… near the destination folder. Make sure your destination folder is a C:// drive where
your installed Quartus or your documents location where you want your project to be
and contains no spaces. Select OK for the first screen that appears when the (.qar) file
opens.

7

Figure 5: Selecting Archive Name and Destination Folder for the .qar file.

Once the (.qar) is done unpacking all its files, you will be able to navigate around the main
Quartus window. We will start modifying our system by using Platform Designer.

8

PART 1: HARDWARE DESIGN
Lab 1: Building Your Platform Designer Based Processor System

The Platform Designer system panel diagram illustrates what you are designing in the Plat-
form Designer environment. The system we are building will have a clock, a single master (the
Nios II processor), and 11 slave devices.

Building the Platform Designer system is a highly efficient way of designing systems with or
without a processor.

� Launch Platform Designer tool from Quartus: Tools → Platform Designer. A pop-up
should open asking if you would like to open a system file. If it does not, click File →
Open. Open the file nios_setup_v2.qsys. Most of the design was completed before-
hand, and almost all the components will already be placed for you. The initial screen
you should see looks like this:

Figure 6: Platform Designer Main Panel

Next we will add the last remaining component: the JTAG UART.

1.1: Adding the JTAG UART Component

The only component you will add to this semicompleted project is the JTAG UART.

� Search for JTAG in the IP catalog and locate the JTAG UART. Double click or click Add:

9

Figure 7: JTAG UART IP

� Keep the default settings and click Finish:

Figure 8: JTAG UART Configuration Panel

� Rename the JTAG UART by right-clicking, pressing rename, and renaming to jtag_uart.

1.2: Connecting the System Components Together

The next step consists of making the appropriate connections between the components and
the JTAG UART component within Platform Designer.

� Underneath jtag_uart select the clock input.

10

Figure 9: JTAG Clock and Reset Connection

� Make the connection between the clk component’s output and the JTAG UART’s clock
input by clicking on the small circle on the line that intersects with the component. Do
the same for the reset signal of the JTAG UART component and the reset signal from the
clk.

Figure 10: JTAG UART Connections

� The next connections to make are the processor interrupt request (IRQ) signals. Make
this connection by selecting the empty bubble for the JTAG UART IRQ signal. We will

11

use the default setting for the IRQ number.

� The UART can drive interrupts, and hence needs to be wired to the cpu processor inter-
rupt lines.

� Last you need to connect the avalon_jtag_slave with the data master connection com-
ing out of the cpu.

� Your final connections should look like the following figure.

Figure 11: System Contents After Interrupt Connections

� Next you will need to generate the base addresses for your Platform Designer system.
This is achieved by using clicking on System→ Assign Base Addresses.

� Save your Platform Designer system by using File→ Save The information is saved in a
.qsys file.

� Note that by saving, you still have not generated the files that you need for Quartus
compilation or with the Eclipse SBT.

� Click on the button Generate HDL. A screen like Figure 10 should appear.

� Click Generate on the panel that appears.

� When the file generation is complete, click Finish to exit the Platform Designer window.

12

Figure 12: HDL Generation Panel

Congratulations! This completes the Platform Designer section of the lab.

Lab 2: Building the Top Level Design

The next step is binding together your Platform Designer system with Verilog code.

Figure 13: Block Diagram of hello_world_lab Design

Quartus should be open. Bring that to the front of your screen. Note that for this design there
is a clock, reset, push button inputs, switch inputs, LED outputs, six HEX outputs (the seven-

13

segment displays), and a JTAG UART. The JTAG UART pins are hard wired into the FPGA so
you don’t need to add them in your Verilog source file. The 4 pins: TCLK, TDI, TMS and TDO
that constitute a 4 wire JTAG interface are at a fixed location in your FPGA and they don’t need
to be added to your Verilog source file. Only pins that are synthesized from your RTL source
code need to be specified.

� The top-level entity is in a file called DE10_LITE_Golden_Top if you are using a DE-10
Lite development kit.

Golden top is a naming convention that Intel FPGA often uses to designate the connections
between the FPGA and all of the external components on the development board. This file is
generally provided by the manufacturer of the development board, but we provide this code
as part of the Quartus Archive (.qar) file for this course. You can see it by double clicking on
file under the Project Navigator section.

Figure 14: Project Navigator View of Golden Top File

The code connects the pushbutton inputs to the LED outputs in software. Keep in mind that
the clock, reset, push button, and LED pin names need to reflect the names for the Develop-
ment Kit.

If you were wondering how to hook up the nios_setup_v2 module yourself, you can check
nios_setup_v2_inst.v, whichwas auto-generated fromnios_setup_v2.qsys inside thenios_setup_v2
directory of your project. Open this file and you see how to instantiate the Platform Designer
system. The contents of this file are shown in Figure 31.

14

Figure 15: Contents of nios_setup_v2_inst.v

We need to specify the top-level entity of our project and add the Verilog code generated by
the Platform Designer system we just created to the project.

� In the top file (DE10_LITE_Golden_Top.v) uncomment line 88 by deleting the “//” at the
beginning of the line.

• By uncommenting this line, wedirectly drive led2on theboardwith switch2 through
the FPGA hardware. No software is required for this led to operate.

� In the Quartus main window, go to Project→ Add/Remove Files.

� Add thenios_setup_v2.qip file. (You can also just add thenios_setup_v2.qsys file.) Press
the ”...” button to open the file dialog box.

• The nios_setup_v2.qip file should be found under nios_setup_v2→ Synthesis di-
rectory in your project.

• You will need to change the filter to display All files if you cannot see it.

The .qip file contains the information for the processor system that we created in the last step.
The .v file connects the Platform Designer system we made to the inputs and outputs of our
board.

� Click Apply once you have added the file.

See Figure 32 for what your Add/Remove Files window should look like. (There may be an
extra .sdc file in the list. This is fine.)

15

Figure 16: Quartus Add/Remove Files Pane

Almost there! We have pre-included and set up the pin assignments for the development kit
for you so you do not have to manually set dozens of pins using the pin planner. These com-
mands handle routing the pins and voltage levels so they can be easily transferred between
projects that use the same board.

� To view the pin assignments, go to Assignments→ Assignment Editor.

Figure 17: Quartus Assignment Editor Window

16

Figure 33 above is what the Assignment Editorwindow should look like. After compiling your
design, the blue diamonds with question marks inside should change to show whether those
pins are inputs or outputs.

Now you can compile your design which will run Analysis/Synthesis, Fitter (place and route
in FPGA terminology), Assembler (generate programming image) and TimeQuest (the static
timing analyzer).

� Click on the play button as shown in Figure 34.

Figure 18: Compilation Button on Quartus Toolbar

Note that some warnings and information messages come up in the bottom window. You can

filter by message level. The errors are filtered with the button, critical warnings with

the button, warnings with the button, and informational messages with the
button. You cannot proceed if you have errors. In this case, there are only critical and standard
warnings, primarily because we did not add timing constraints to this project. Due to the sim-
plicity of this design and low frequency, it’s okay to start without timing constraints. Consult
other Intel FPGA online training courses for instructions on how to add timing constraints to
your design.

Congratulations, your FPGA hardware design is now complete!

Now we will create software that will run on the board and take advantage of the Nios II pro-
cessor that we just configured.

17

PART 2: SOFTWARE DESIGN
Lab 1: Creating the Software for the “Hello World” design

Should you choose to start directly in the Software Design section and skip the Hardware De-
sign section, consult with your lab facilitator to get these two files: nios_setup_v2.sopcinfo
and top.sof as if you generated them from the Hardware Design lab. You will be able to com-
plete all subsequent steps with these two files.

The NIOS Software Build Tools for Eclipse are included as part of Quartus. These tools will
help manage creation of the application software and Board Support Package (BSP).

� Launch Tools→ NIOS II Software Build Tools for Eclipse. You can use the default loca-
tion that Eclipse picks for you.

Figure 19: Initial Workspace Setup

� Click OK in the Workspace launcher. Next, the Eclipse SBT will launch.

Figure 20: Creating the Initial Project in the Eclipse SBT

18

� Right click in the area called Project Explorer and select New→ Nios II Application and
BSP from Template.

The BSP is the “Board Support Package” that contains the drivers for things like translating
printf C commands to the appropriate instructions to write to the terminal.

Next you will see a panel that requests information to setup your design.

� Navigate to your working directory and click on the .sopcinfo file. The .sopcinfo file
informs Eclipse on what your Platform Designer system contains.

� Click OK.

Figure 21: Navigating to the .sopcinfo File

� Fill in the Project name, call it hello_world_sw.

� Next you will be asked to pick a template design. Select the Hello World Small” appli-
cation template. This template writes “Hello from Nios II” to the screen.

• Make sure to pick Hello World Small and not Hello World or you will not have
enough memory in your FPGA design to store the program executable.

� Click Finish.

We will now make some modifications to the code to display the results of the pushbuttons
(KEY1-0) on LEDs 3-2.

19

Figure 22: Completing the Nios II Software Examples Setup Screen

� Click the right arrow next to hello_world_sw. It will show the contents of your project.
Double-click hello_world_small.c.

Figure 23: Eclipse Window of “hello_world_small.c”

20

Note the command alt_putstr to write text to the terminal. This is part of the Hardware Ab-
straction Layer (HAL) set of software functions. Note that the alt_putstr command is used
versus a standard C printf function because the code space is more compact using the HAL
commands. Code using HAL functions without an operating system is referred to as “bare
metal” programming. A complete list of these functions can be found in the Nios II Software
Developer’sHandbook: https://www.intel.com/content/www/us/en/programmable/products/
processors/support.html.

Next you need to add a library declaration, define integer switch_datain, and a few HAL func-
tions to connect the LEDs to the Push Buttons.

� Drag and drop the file DE_hello_world.c (found in the subfolder C_CODE) into Eclipse
Project Explorer tab under the hello_world_small_sw project folder.

• If you cannot drag and drop, copy and replace the code from the DE_hello_world.c
into the hello_world_small.c and skip step 11.

� Delete thepre-madehello_world_small.c file in yourhello_world_sw folder in theEclipse
Project Explorer. This can be done by right clicking on hello_world_small.c and select-
ing Delete from the drop down menu that appears.

The codemay appear somewhat cryptic, so we will now take the time to explain what the vari-
ous lines do. IORD_INTEL PSG_AVALON_PIO_DATA (Location) gets the data from the specified
Location (given in the system.h file under the hello_world_sw_bsp folder) and reads it into a
variable. Calling the functionwith twoparameters, as in: IOWR_INTELPSG_AVALON_PIO_DATA
(Location, Value) writes the numeric Value to the given Location. We are using this function to
read the data from the push buttons and then write this value to LEDs.

Note the use of the variables BUTTON_BASE and LED_BASE. These variables are created by
importing the information from the .sopcinfo file. You can find defined variables in the sys-
tem.h file under the hello_world_sw_bsp project. Double click on system.h file and inspect the
defined variable names for BUTTON_BASEandLED_BASE. Thesemustmatch your hello_world_small.c
code.

� Click the save icon.

� Now that we have written our code, click Project→ Build All.

� Once the build completes, you should observe an .elf file (executable load file) under the
hello_world_sw project. If the .elf file does not exist, the project did not build properly.
Inspect the problems tab on the bottom of the Eclipse SBT and determine if there are
syntax problems, correct, and rerun Build All. Typical problems include missing semi-
colons and mismatched brackets.

21

https://www.intel.com/content/www/us/en/programmable/products/processors/support.html
https://www.intel.com/content/www/us/en/programmable/products/processors/support.html

Figure 24: Window View of “hello_world_sw.elf”

Lab 2: Downloading the Hardware Image to the Development Kit

If you have never used the USB blaster before, you will need to follow these steps to
update your USB blaster’s driver software. If you have used the USB blaster before on
your computer, you may skip this portion of the manual.

To work with the Max10 in the context of this lab, you will need to connect a USB cable con-
necting the kit to a host PC. The USB blaster utilizes circuitry that formats the image into a
data stream that downloads from the PC to FPGA.

To install the USB Blaster, follow these steps:

� To begin, make sure you connect your board to your computer via a USB cable. Depend-
ing on your board model, you may need to plug your board into power.

� Hit the windows key and type Device Manager.

� Click on the Device Manager tile that appears.

� Navigate to the Other Devices section of the device manager and expand the section.

22

Figure 25: Device Manager Showing USB Blaster Drivers Not Installed

� Right click the USB-Blaster device and select Update Driver Softwar”.

� Choose to browse your computer for driver software.

Figure 26: Selecting to Browse for Driver Software Directory

� Navigate to the path shown in Figure 42. This should be the path where you have in-
stalled Quartus on your computer.

23

Figure 27: Directory Containing USB Blaster Drivers

� Once you have the proper file path selected, click on Next and the driver for the USB
Blaster should be installed. 

� With theUSBblaster drivers properly installed, launch the Programmer by clickingTools
→ Programmer.

� Next, you need to download what is called a .sof file or SRAM object file. This is the pro-
gramming image file that gets downloaded in the FPGA. The default location is <work-
ing_directory>/output_files.

� Right click on the first row <none> under File and click on Change File. Navigate to the
output_files directory and select top.sof.

� Click Open.

Figure 28: Program/Configure Checkbox

� In the first row under Program/Configure click in the check box as shown in Figure 44
above.

� Click on Hardware Setup, located in the top left corner of the programmer window. In
the currently selected hardware section, click on the drop-down menu and select the
USB Blaster.

24

Figure 29: Programmer Progress Successful

� Click Start, located on the left of the programmer window. When programming is com-
plete, the progress meter should read 100% (Successful).

Now that the FPGA is programmed the hardware is operating. However, we have not pro-
grammed the software for the NIOS CPU yet. To demonstrate the hardware is functioning,
even while the NIOS processor is not, press the switch SW2 to on (towards the LEDS). You
should see only one LED light up. Follow steps 15-18 below then try pressing the keys again.
Note how the hardware driven LED does not need the software executable file .elf to operate.

Now it is time to download the .elf (software executable) into the Nios IIe processor.

� Return to the Eclipse SBT tools. Right click on hello_world_sw and select Run as→ Run
Nios II Hardware. A window should appear as shown below.

� Click on the Target Connection tab.

• The connection should indicate that Eclipse has connected to the USB-blaster.

• If the connection is not identified, you can click Refresh Connections.

• Youmight need to stretch thewindowwider to see the Refresh Connections button.

� Once the connection is made to the USB-Blaster, you should observe something like
Figure 44.

� Click Run. If the run button is grayed out but your device shows up under the connec-
tions window, you may need to select Ignore mismatched system ID and Ignore mis-
matched system timestamp.

25

Figure 30: Eclipse SBT Tools after Connection is made to the USB-Blaster

� Now you have hardware and software downloaded into your board. You should observe
“Hello from Nios II!” printed on the Nios II Console tab.

Figure 31: ”Hello from Nios II!” on Nios II Console Tab

� You can also test the connections between push button and LEDs. Push buttons 0-1
should now turn LEDs 0-1 onwhen pressed. The pushbuttons and LEDswere connected
through our Platform Designer system and the C code we have running on our develop-
ment kit.

KEY CONCEPTS:

• When you push buttons 0 and 1, LEDs 0 and 1 will light up. This connectivity is made
through software.

• When you flick switch SW2, LED 2 will light up. This connectivity is made through hard-
ware.

Lab 3: Using the Seven Segment Display

One of the nice things about the NiosII processor is that since we have already designed the
hardware, we can now change the software without having to reprogram the FPGA. We will

26

now program the Nios2 processor to display text on the seven segment displays and make
pushbuttons speed up and slow down the text.

� Drag and drop the file named DE_seven_segment_display.c into the hello_world_sw
project folder in Eclipse. DE_seven_segment_display.c can be found in the C_CODE
subfolder in the DE10_qsys_workshop folder. If you cannot drag and drop the file,
copy and replace the code from DE_seven_segment_display.c into the .c file already
present and skip the next step.

� Remove the file DE_hello_world.c by right clicking on the file and selecting Delete.

� Right click on the hello_world_sw in the Project Explorer and click on Clean Project.

� When theprogram is finished, right click onhello_world_swagain and selectBuildProject.

� Once the build completes, the .el) file under the hello_world_sw project should be up-
dated. To check, right click on the .elf file and go to Properties. The time under the “Last
Modified” section should reflect the time the last build was completed.

� Right-click on the hello_world_sw folder in the Project Explorer on the right and select
Run as→RunNios II Hardware. This will run the newC programon theNios2 processor.

� Now a prompt should appear in the console telling you to enter text. Type something
like “Hello World” into the console and press ENTER. The text should appear on the
seven-segment display.

� You can control the text in the following manner using the two push buttons:

• Press KEY0 to perform multiple functions. The console outputs the current step.

- Press to speed up (hold down to speed up more).

- Press again to speed up more (hold down to speed up more).

- Press again to go even faster (might go so fast all LEDs appear on).

- Press again to slow down.

- Press again to change scroll direction (to the right).

- Press again to flip letters upside-down.

- Press again to make the letters scroll up (or dance)

- Press again to make the letters scroll down (or dance)

- Press again, to clear screen

• Press KEY1 change text. Look at the console for further instructions).

If you are fluent inC, trymodifying theprogram to add functions for someof theother switches.
Whenmodifying, orwriting your ownprogram, the variable switch_datain is assigned the value
of the switches.

27

LAB SUMMARY
You now have completed the hardware and software sections of this lab. This includes:

• Loading the Device Kit pin settings into Quartus.

• Using Platform Designer to build a Nios II based system.

• Instantiating the Platform Designer component into your top level design.

• Add some connections between push buttons, switches and LEDs.

• Compiling your hardware.

• Importing the Nios II based system into the Eclipse Software Build Tools.

• Building a software project.

• Modifying a software template to perform some simple IO functions.

• Compiling your software.

• Downloading the hardware image into the development kit.

• Downloading the software executable into the development kits.

• Testing the hardware.

Please visithttps://fpgauniversity.intel.com to discovermore embedded systems, NIOS,
and software development trainings and reference designs from Intel and our technology
partners.

28

https://fpgauniversity.intel.com

APPENDIX
List of Figures

1 Quartus Download Page . 4
2 Platform Designer Development Flow . 5
3 Nios II Based System Used In This Lab . 6
4 DE-10 Lite . 7
5 Selecting Archive Name and Destination Folder for the .qar file. 8
6 Platform Designer Main Panel . 9
7 JTAG UART IP . 10
8 JTAG UART Configuration Panel . 10
9 JTAG Clock and Reset Connection . 11
10 JTAG UART Connections . 11
11 System Contents After Interrupt Connections . 12
12 HDL Generation Panel . 13
13 Block Diagram of hello_world_lab Design . 13
14 Project Navigator View of Golden Top File . 14
15 Contents of nios_setup_v2_inst.v . 15
16 Quartus Add/Remove Files Pane . 16
17 Quartus Assignment Editor Window . 16
18 Compilation Button on Quartus Toolbar . 17
19 Initial Workspace Setup . 18
20 Creating the Initial Project in the Eclipse SBT . 18
21 Navigating to the .sopcinfo File . 19
22 Completing the Nios II Software Examples Setup Screen 20
23 Eclipse Window of “hello_world_small.c” . 20
24 Window View of “hello_world_sw.elf” . 22
25 Device Manager Showing USB Blaster Drivers Not Installed 23
26 Selecting to Browse for Driver Software Directory 23
27 Directory Containing USB Blaster Drivers . 24
28 Program/Configure Checkbox . 24
29 Programmer Progress Successful . 25
30 Eclipse SBT Tools after Connection is made to the USB-Blaster 26
31 ”Hello from Nios II!” on Nios II Console Tab . 26

List of Tables

1 Resource File . 7
2 Revision Control History . 31

29

Revision History

30

DATE NAME DESCRIPTION
05/01/2015 L. Landis Initial release
06/02/2015 L. Landis Added BeMicro
11/30/2015 I. Rush Added CVE DevKit
12/02/2015 S. Meer Consolidated sections
12/04/2015 I. Rush Updated pinout table
03/18/2016 K. Kita Separated lab by board
05/10/2016 J. Xia Revised for university workshops
06/06/2016 P. Mayer Added scrolling text
03/23/2017 A. Weinstein USB blaster installation
04/03/2017 A. Weinstein Added CVGX DevKit
04/18/2017 A. Weinstein Updated .qar files
10/23/2017 D. Henderson Port to DE10-Lite
02/15/2018 A. Joshipura Added location where to unzip files

03/21/2018 A. Joshipura Added switch in the manual and changed figures for it;
added SW2-LED2 connection

04/02/2018 A. Joshipura Edited functionality of seven segment display to do all
functions in button 0

04/08/2018 R. Nevin
Fixed switch PIO direction, clarified guidance for “hello
world small” template & instructions to import
DE10LITE_hello_world.c

04/11/2018 A. Joshipura
Added a single page for different workshop links;
added images of both boards and changed Qsys to
Platform Designer.

04/25/2018 A. Joshipura Added Intel logo 7 explanation on the links

07/06/2018 S. Soto
Fixed System Done code by uncommenting line 88 (for
DE10-Lite) and line 172 (for DE0-CV) in golden_top.v;
fixed the order of components listed in the
beginning of Lab 1.5 and emphasized double
checking components were named properly

07/06/2018 H. Martinez Edited seven segment screen code; cleaned up syntax
and added console text for clarity

08/22/2018 H. Martinez Transferred from .docx to LATEX; updated figure
numbers and enforced cross referencing; revised minor
grammar issues; formatted according to Intel branding
guidelines

08/08/2019 R. Nevin Fixed incorrect URLs and product names

09/12/2019 R. Schutz Edited to create short form lab. Made JTAG UART only
component needing to be added

Table 2: Revision Control History

31

	Lab Overview
	Lab Notes
	Design Flow
	Objective of the "Hello World" Lab
	Get Started with Quartus
	Part 1: Hardware Design
	Lab 1: Building Your Platform Designer Based Processor System
	1.1: Adding the JTAG UART Component
	1.2: Connecting the System Components Together

	Lab 2: Building the Top Level Design

	Part 2: Software Design
	Lab 1: Creating the Software for the “Hello World” design
	Lab 2: Downloading the Hardware Image to the Development Kit
	Lab 3: Using the Seven Segment Display

	Lab Summary
	Appendix
	List of Figures
	List of Tables
	Revision History

