") Using Library Modules
(lntel, FPGA in Verilog Designs

For Quartus® Prime 18.1

1 Introduction

This tutorial explains how Intel’s library modules can be included in Verilog-based designs, which are implemented
by using the Quartus® Prime software.

Contents:

* Example Circuit
* Library of Parameterized Modules
* Augmented Circuit with an LPM

* Results for the Augmented Design

Intel Corporation - FPGA University Program 1
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

2 Background

Practical designs often include commonly used circuit blocks such as adders, subtractors, multipliers, decoders,
counters, and shifters. Intel provides efficient implementations of such blocks in the form of library modules that
can be instantiated in Verilog designs. The compiler may recognize that a standard function specified in Verilog
code can be realized using a library module, in which case it may automatically infer this module. However, many
library modules provide functionality that is too complex to be recognized automatically by the compiler. These
modules have to be instantiated in the design explicitly by the user. Quartus® Prime software includes a library of
parameterized modules (LPM). The modules are general in structure and they are tailored to a specific application
by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:

* Library of parameterized modules (LPMs)
* Configuring an LPM for use in a circuit
* Instantiating an LPM in a designed circuit
The detailed examples in the tutorial were obtained using the Quartus Prime version 18.1, but other versions of the

software can also be used. When selecting a device within Quartus Prime, use the device names associated with
FPGA chip on the DE-series board by referring to Table 1.

Board Device Name
DEO-CV Cyclone® V 5CEBA4F23C7
DEO-Nano Cyclone® IVE EP4CE22F17C6
DEO-Nano-SoC | Cyclone® V SoC SCSEMA4U23C6
DEI1-SoC Cyclone® V SoC 5CSEMAS5F31C6
DE2-115 Cyclone® IVE EP4CE115F29C7
DE10-Lite Max® 10 10M50DAF484C7G
DE10-Standard | Cyclone® V SoC 5CSXFC6D6F31C6
DE10-Nano Cyclone® V SE 5CSEBA6U2317

Table 1. DE-series FPGA device names

3 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add, subtract, and accumulate 7-bit
numbers using the 2’s complement number representation. The two primary inputs are numbers A = a,_1a,—2 - do
and B = b,_1b,_2 -+ by, and the primary output is Z = z,_12,-2 - 29. Another input is the AddSub control signal
which causes Z = A+ B to be performed when AddSub =0 and Z = A— B when AddSub = 1. A second control input,
Sel, is used to select the accumulator mode of operation. If Sel = 0, the operation Z = A + B is performed, but if Sel
= 1, then B is added to or subtracted from the current value of Z. If the addition or subtraction operations result in
arithmetic overflow, an output signal, Overflow, is asserted.

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

To make it easier to deal with asynchronous input signals, they are loaded into flip-flops on a positive edge of the
clock. Thus, inputs A and B will be loaded into registers Areg and Breg, while Se/ and AddSub will be loaded into
flip-flops SelR and AddSubR, respectively. The adder/subtractor circuit places the result into register Zreg.

A= a, ag Sel B=1Db,_,; b, AddSub
e o 0 LN
n-bit register F/F n-bit register F/F
Areg = areg, areg, Breg = breg, breg,
—{ AddSubR
e o 0 e o o d d
n-bit 2-to-1 MUX e
SelR
l
G=l3n-1 oo ‘80 H=yh, | oo hy
WV
carryout n-bit adder carryin fe——o-—
M= |m, 4 my
d hn—l et
l] n-bit register Zreg
over_flow Zreg = | zreg, zreg
F/F co e
Overflow Z= 7z, 2

Figure 1. The adder/subtractor circuit.

The required circuit is described by the Verilog code in Figure 2. For our example, we use a 16-bit circuit as specified
by n = 16. Implement this circuit as follows:

* Create a project addersubtractor.

* Include a file addersubtractor.v, which corresponds to Figure 2, in the project.

Select the FPGA chip that is on the DE-series board. A list of device names on DE-series boards can be found
in Table 1.

* Compile the design.

» Simulate the design by applying some typical inputs.

Intel Corporation - FPGA University Program 3
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

module addersubtractor (A, B, Clock, Reset, Sel, AddSub, 7, Overflow);
parameter n = 16;
input [n-1:0] A, B;
input Clock, Reset, Sel, AddSub;
output [n-1:0] 7Z;
output Overflow;
reg SelR, AddSubR, Overflow;
reg [n-1:0] Areg, Breg, Zreg;
wire [n-1:0] G, H, M, Z;
wire carry_out, over_flow;

assign H = Breg ~ {n{AddSubR}};
mux2tol multiplexer (Areg, Z, SelR, G);
defparam multiplexer.k = n;
adderk nbit_adder (AddSubR, G, H, M, carryout);
defparam nbit_adder.k = n;
assign over_flow = carryout ~ G[n-1] ~ H[n-1] ~ M[n-1];
assign Z = Zreg;

always (@ (posedge Reset or posedge Clock)

if (Reset == 1)
begin
Areg <= 0; Breg <= 0; Zreg <= 0;
SelR <= 0; AddSubR <= 0; Overflow <= 0;
end
else
begin

Areg <= A; Breg <= B; Zreg <= VN;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
end
endmodule

module mux2tol (V, W, Sel, F);
parameter k = §;
input [k-1:0] VvV, W;
input Sel;
output [k-1:0] F;
reg [k-1:0] F;

always @(V or W or Sel)

if (Sel == 0)
F=V;
else
F = W;
endmodule

Figure 2. Verilog code for the circuit in Figure 1 (Part a)

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quamm@ Prime 18.1

module adderk (carryin, X, Y, S, carryout);

parameter k = §;
input [k-1:0] X, Y;
input carryin;
output [k-1:0] S;
output carryout;
reg [k-1:0] S;

reg carryout;

always @ (X or Y or carryin)
{carryout, S} = X + Y + carryin;

endmodule

Figure 2. Verilog code for the circuit in Figure 1 (Part b).

4 Library of Parameterized Modules

The LPMs in the IP Catalog are general in structure and they can be configured to suit a specific application by
specifying the values of various parameters. We will use the Ipm_add_sub module to simplify our adder/subtractor
circuit defined in Figures 1 and 2. The augmented circuit is given in Figure 3. The Ipm_add_sub module, instantiated
under the name megaddsub, replaces the adder circuit as well as the XOR gates that provide the input H to the adder.
Since arithmetic overflow is one of the outputs that the LPM provides, it is not necessary to generate this output with
a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory named tutorial_Ipm, and then create a project
addersubtractor2. Choose the same device as we previously selected (Refer to Table 1) to allow a direct comparison
of implemented designs.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quamm@ Prime 18.1

A= a,_, ag Sel B=b,_, b, AddSub
e o 0 l L o o o l l
n-bit register F/F n-bit register F/F
o
Areg = | areg, _, areg, Breg =| breg, _, breg,,
1 o o 0 ' e o o
n-bit 2-to-1 MUX e
SelR
| |
G = \ 8n_1 e e o ' 80 ' L
dataa datab
megaddsub module add_sub
overflow result ~AddSubR
M= |m,_, m
over_flow oo o
\
F/F n-bit register Zreg
Zreg = | zreg, _, zreg,
e o o
|
Overflow Z= Z,_, 2

Figure 3. The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit specified as a Verilog module that will be instantiated in
the top-level Verilog design module. The Verilog module for the LPM subcircuit is generated by using a wizard as
follows:

1. Select Tools > IP Catalog, which opens the IP Catalog window in Figure 4.

2. Inthe IP Catalog panel, expand Library > Basic Functions > Arithmetic and double-click on LPM_ADD_SUB

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quartus® Prime 18.1

|IP Catalog

.

4 g Installed P

> Project Directory

4 Library

4 Basic Functions

.=

4 Arithmetic

ALTERA_CORDIC
ALTERA_FP_ACC_CUSTO
ALTERA_FP_FUNCTIONS

ALTERA_MULT_ADD
ALTFP_ABS
ALTFP_ADD_SUB
ALTFP_ATAN
ALTFP_COMPARE
ALTFP_CONVERT
ALTFP_DIV
ALTFP_EXP
ALTFR_INV
ALTFP_INV_SQRT
ALTFP_LOG
ALTFP_MULT
ALTFP_SINCOS
ALTFP_SQRT
ALTMEMMULT

ALTMULT_COMPLEX
ALTSQRT
LPM_ADD_SUB
LPM_COMPARE

LU 2

d
X =

+ Add..

Figure 4. Choose an LPM.

G Save IP Variation

IP variation file name:

|C:,FDesktopftutorial_lpmfmegaddsub.\.' |

IP variation file type
O vHDL

® Verilog

*

Cancel

Figure 5. Create an LPM from the available library.

3. In the pop-up box shown in Figure 5, choose Verilog as the type of output file that should be created. The
output file must be given a name; choose the name megaddsub.v and indicate that the file should be placed in
the directory tutorial_Ipm as shown in the figure. Press OK.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

< MegaWizard Plug-In Manager [page 1 of 6] ? *
) LPM_ADD_SUB

Parameter

Settings

[General | > & 2 > > Pipelining

Currently selected device famiy: Cyclone v

megaddsub
dd_sub Match project/default
| dataa[15. G- [4+BIAE
esult[15..0
| datab[15..0))]
How wide should the ‘dataa’ and 'datab’ input buses be? bits

Which operating mode do you want for the adder/subtractor?

O Addition only

(O Ssubtraction only

® Create an 'add_sub' input port to allow me to do both (1 adds; 0 subtracts)

Resource Usage

16 lut | Cancel || < Back || MNext > || Finish |

Figure 6. Specify the size of data inputs.

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the operating mode
in which one of the ports allows performing both addition and subtraction of the input operand, under the
control of the add_sub input. A symbol for the resulting LPM is shown in the top left corner. Note that if
add_sub = 1 then result = A+ B; otherwise, result = A— B. This interpretation of the control input and the
operation performed is different from our original design in Figures 1 and 2, which we have to account for in
the modified design. Observe that we have included this change in the circuit in Figure 3. Click Next.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

< MegaWizard Plug-In Manager [page 2 of 6]

"2 LPM_ADD_SUB
Parameter

Settings
| General2 |

General Pipelining

megaddsub Is the 'dataa’ or 'datab’ input bus value a constant?
dd_sub . ® Mo, both values vary

Jataalis. L'+2J:EE15“D O Yes, dataa= 0 Dec

| datab[15..0 O Yes, datab= 0 Dec
Which type of addition/subtraction do you want?
O Unsigned
® Signed

Resource Usage

16 lut | Cancel || < Back || MNext > || Finish |

Figure 7. Further specification of inputs.

5. In the box in Figure 7, specify that the values of both inputs may vary and select Signed for the type of
addition/subtraction. Click Next.

Intel Corporation - FPGA University Program 9
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

< MegaWizard Plug-In Manager [page 3 of 6]

"2 LPM_ADD_SUB

Parameter

Settings

General 2 Pipelining

General >

megaddsub Do you want any optional inputs or outputs?
dd_sub Input:
A+BIE-B
dataal15.4 [create a carry/borrow-out input
esult[15..0
| datab[15..0
overflow, i

[create 3 carry/borrow-in output

Create an overflow output

Resource Usage
16 lut | Cancel || < Back || MNext > || Finish |

Figure 8. Specify the Overflow output.

6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be specified. Since
we need the overflow signal, make the Create an overflow output choice and press Next.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quartus® Prime 18.1

< MegaWizard Plug-In Manager [page 4 of 6]

"2 LPM_ADD_SUB

Parameter

Settings

General > General 2 __::IZ::- Ports | Pipelining

megaddsub Do you want to pipeline the function?
dd_sub . ® No
RECIECL ﬁ+2":§ﬁ15_0 O Yes, I want an output latency of 0 clock cycles
| datap[15..4 Create an asynchronous Clear input
overflow, Create a Clock Enable input
Resource Usage
16 lut | Cancel | | < Back | [Next > | | Finish |

Figure 9. Refuse the pipelining option.

7. In the box in Figure 9 say NoO to the pipelining option and click Next.

8. Figure 10 shows the simulation model files needed to simulate the generated design. Press Next to proceed to
the final page.

Intel Corporation - FPGA University Program

March 2019

11

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quartus® Prime 18.1

12

< MegaWizard Plug-In Manager [page 5 of 6]

"2 LPM_ADD_SUB

Simulation Libraries

megaddsub To properly simulate the generated design files, the following simulation model
dd_sub file(s) are needed
dataa[15. 0 /2B B File Description
 sotabi15.0 esulff15.0 Ipm LPM megafunction simulation library
overflow,

Timing and resource estimation

Generates a netlist for timing and resource estimation for this megafunction. If
you are synthesizing your design with a third-party EDA synthesis tool, using a

timing and resource estimation netlist can allow for better design optimization.

Mot all third-party synthesis tools support this feature - check with the tool
vendor for complete support information.

MNote: Netlist generation can be a time-intensive process. The size of the design
and the speed of your system affect the time it takes for netlist generation to
complete.

[] Generate netlist

Resource Usage

16 lut

| Cancel || < Back | [Mext > | | Finish |

Figure 10. Simulation model files.

9. Figure 11 gives a summary which shows the files that the wizard will create. Press Finish to complete the

process.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quartus® Prime 18.1

< MegaWizar

d Plug-In Manager [page & of 6]

"2 LPM_ADD_SUB

E Summary

dd_sub
dataa[15. 014

| datab[15..0

Turn on the files you wish to generate. A gray checkmark indicates a file that is
megaddsub

automatically generated, and a green checkmark indicates an optional file. Click Finish
to generate the selected files. The state of each checkbox is maintained in

+BIEE subsequent MegaWizard Plug-In Manager sessions.
U150 The MegaWizard Plug-In Manager creates the selected files in the following directory:
C:\Desktop\tutorial_Ipmy,
averflow, File Description
megaddsub.v Variation file

[megaddsub.inc AHDL Include file

[megaddsub.cmp VHDL component declaration file
[megaddsub.bsf Quartus Prime symhbaol file

[megaddsub_inst.v Instantiation template file

[megaddsub_bb.v Verilog HDL black-box file

Resource Usage

16 lut

Cancel

Figure 11. Files created by the wizard.

10. The box in Figure 12 may pop up. If it does, press Yes to add the newly generated files to the project.

G Quartus Prime IP Files =
When you create an Intel IP variation, a Quartus Prime IP File is
generated. Quartus Prime IP Files are used to represent the Intel IP in

your design. Do you want to add the Quartus Prime IP File to the
project?

CA\Desktop\tutorial_lpm\megaddsub.qip

O Automatically add Quartus Prime IP Files to all projects

(Note: Turning on this option permanently suppresses this dialog box.
‘You can change this setting in the Options dialog box)

Yes Mo Help

Figure 12. Add the new files to the project.

Intel Corporation - FPGA University Program

March 2019

13

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

5 Augmented Circuit with an LPM

We will use the file megaddsub.v in our modified design. Figure 13 depicts the Verilog code in this file; note that we
have not shown the comments in order to keep the figure small.

module megaddsub (
add_sub,
dataa,
datab,
overflow,
result);

input add_sub;

input [15:0] dataa;

input [15:0] datab;

output overflow;

output [15:0] result;

wire sub_wireO;

wire [15:0] sub_wirel;
wire overflow = sub_wire0;

wire [15:0] result = sub_wirel[15:0];

lpm_add_sub lpm_add_sub_component (

.dataa (dataa),

.add_sub (add_sub),

.datab (datab),

.overflow (sub_wireO),

.result (sub_wirel));
defparam

lpm_add_sub_component.
lpm_add_sub_component.
lpm_add_sub_component.
lpm_add_sub_component.
lpm_add_sub_component.

endmodule

lpm_direction = "UNUSED",

lpm_hint = "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO",
lpm_representation = "SIGNED",

lpm_type = "LPM_ADD_SUB",

lpm_width = 16;

Figure 13. Verilog code for the ADD_SUB LPM.

14

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

The modified Verilog code for the adder/subtractor design is given in Figure 14. Put this code into a file addersub-
tractor2.v under the directory tutorial_Ilpm. The differences between this code and Figure 2 are:

* The assign statements that define the over_flow signal and the XOR gates (along with the signal defined as
wire H) are no longer needed.

* The adderk instance of the adder circuit is replaced by megaddsub. Note that the dataa and datab inputs shown
in Figure 6 are driven by the G and Breg vectors, respectively. Also, the inverted version of the AddSubR signal
is specified to conform with the usage of this control signal in the LPM.

e The adderk module is deleted from the code.

module addersubtractor2 (A, B, Clock, Reset, Sel, AddSub, 7, Overflow);
parameter n = 16;
input [n-1:0] A, B;
input Clock, Reset, Sel, AddSub;
output [n-1:0] 7Z;
output Overflow;
reg SelR, AddSubR, Overflow;
reg [n-1:0] Areg, Breg, Zreg;
wire [n-1:0] G, M, Z;
wire over_flow;

mux2tol multiplexer (Areg, Z, SelR, G);
defparam multiplexer.k = n;

megaddsub nbit_adder (~AddSubR, G, Breg, M, over_flow);
assign Z = Zreg;

always (@ (posedge Reset or posedge Clock)

begin
if (Reset == 1)
begin
Areg <= 0; Breg <= 0; Zreg <= 0;
SelR <= 0; AddSubR <= 0; Overflow <= 0;
end
else
begin
Areg <= A; Breg <= B; Zreg <= N;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
end
end
endmodule
Figure 14. Verilog code for the circuit in Figure 3 (Part a)
Intel Corporation - FPGA University Program 15

March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quartus® Prime 18.1

module mux2tol

(V’ WI

parameter k = §;
[k=1:0]1 Vv, W;

input
input
output
reg [k

Selm;
[k=1:0] F;

-1:0] F;

Selm, F);

always @(V or W or Selm)

if

(Selm == 0)

else

endmodule

Figure 14. Verilog code for the circuit in Figure 3 (Part b).

If the megaddsub.qip file has not been included in the project (e.g. if you answered No in the box in Figure 12, or
possibly if the box did not show up at all), you need to include it manually. To include the megaddsub.v file in the
project, select Project > Add/Remove Files in Project to reach the window in Figure 15. The file addersubtrac-
tor2.v should already be listed as being included in the project. Browse for the other files by clicking the button ...
to reach the window in Figure 16. Select the file megaddsub.qip and click Open, which returns to the window in

Figure 15. Click Add to include the file and then click OK. Now, the modified design can be compiled and simulated
in the usual way.

16

Settings - tutorial_lpm

Category.

General
Files
Libraries
¥ IP Settings
1P Catalog Search Locations
Design Templates
~ Operating Settings and Condition
Voltage
Temperature
v Compilation Process Settings
Incremental Compilation
v EDATool Settings
Design Entry/Synthesis
Simulation
Board-Level
¥ Compiler Settings
VHDL Input
Verilog HDL Input
Default Parameters
Timing Analyzer
Assembler
Design Assistant
Signal Tap Logic Analyzer
Logic Analyzer Interface
Power Analyzer Settings
SSN Analyzer

o x

Device/Board...

|

Select the design files you want to include in the project. Click Add All to add all design files in the project

directory to the project

Eile name: ‘

X

File Name Type
addersubtractor2.v Verilog HDL File

Library Design Entry/Synthesis Tool HDL

<None>

:Defau

>

Cancel Apply

Add
Add All
Remove
up
Down

Properties

Help

Figure 15. Inclusion of the new file in the project.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS

For Quartus® Prime 18.1

Select File
T » This PC » 0SDisk (C:) » Desktop > tutoriallpm > v O Search tutorial_lpm
Organize ~ New folder ES -
~
+ tosliupmai# A pame Date modified Type Size
figures
o db 2/14/2019 410 PM File folder
o figures
greybox_tmp 2/14/2019 417 PM File folder
figures
Ll i addersubtractorz.v 2/14/2019 421 PM V File 1K8
f - .
o Tigures megaddsub.qip 2/14/2019 419 PM QP File 1kB
#&. OneDrive L‘." megaddsub.v 2/14/2019 4:19 PM V File 5 KB
L ddsub_bb 2/14/2019 418 PM W Fil 5KB
¥ syncplicity L megaddsub_bb.v 2/14/2 V File 5
5 This PC
» 3D Objects
#m Desktop

¢+ Documents

4 Downloads

B Music

= Pictures

& Videos

2 3 0sDisk (C) v

File name: | megaddsub.qip

Design Files (*.tdf *.vhd

<

X
»

o @
“hdl =, ~

Cancel

Figure 16. Specify the megaddsub.qip file.

6 Results for the Augmented Design

Compile the design and look at the summary, which is depicted in Figure 17. Observe that the modified design is
implemented with a similar number of logic elements compared to using the code in Figure 2.

Eile Edit Tools Window Help

Table of Contents 1

ES Flow Summary
E= Flow Settings
E= Flow Non-Default Global Settings

0 Compilation Report - C/Desktop/tutorial_lpm/tutorial_lpm - tutorial Ipm

Flow Summary

o

Flow Status

Quartus Prime Version

Successful - Thu Feb 14 16:25:49 2019
18.1.0 Build 625 09/12/2018 SJ Standard Edition

E= Flow Elapsed Time Revision Name tutorial_lpm
EE Flow 05 Summary Top-level Entity Name addersubtractor2
@ Flow Log Family Cyclone V
Analysis & Synthesis Device 5CSXFC6DEF31C6
Fitter Timing Models Final
O Flow Messages Logic utilization (in ALMs) 21/41810(<1%)
@ Flow Suppressed Messages Total registers 37
Assembler Total pins 53/499(11%)
Timing Analyzer Total virtual pins 0
Total block memaory bits 0/5,662,720(0%)
Total DSP Blocks 0/112(0%)
Total HSSI RX PCSs 0/9(0%)
Total HSSI PMARX Deserializers 0/9(0%)
< > v
100% 00:01:23

Figure 17. Compilation Results for the Augmented Circuit.

Intel Corporation - FPGA University Program

March 2019

17

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VERILOG DESIGNS For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

18 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Background
	3 Example Circuit
	4 Library of Parameterized Modules
	5 Augmented Circuit with an LPM
	6 Results for the Augmented Design

