1 Introduction

This tutorial explains how the SDRAM chip on the Intel® DE0-Nano Development and Education board can be used with a Nios® II system implemented by using the Intel Platform Designer tool. The discussion is based on the assumption that the reader has access to a DE0-Nano board and is familiar with the material in the tutorial *Introduction to the Intel Platform Designer Tool*.

The screen captures in the tutorial were obtained using the Quartus® Prime version 18.1; if other versions of the software are used, some of the images may be slightly different.

Contents:

- Example Nios II System
- The SDRAM Interface
- Using the Platform Designer tool to Generate the Nios II System
- Integration of the Nios II System into the Quartus Prime Project
- Using the Clock Signals IP Core
2 Background

The introductory tutorial *Introduction to the Intel Platform Designer Tool* explains how the memory in a Cyclone® series FPGA chip can be used in the context of a simple Nios II system. For practical applications it is necessary to have a much larger memory. The Intel DE0-Nano board contains an SDRAM chip that can store 32 Mbytes of data. This memory is organized as 4M x 16 bits x 4 banks. The SDRAM chip requires careful timing control. To provide access to the SDRAM chip, the Platform Designer tool implements an *SDRAM Controller* circuit. This circuit generates the signals needed to deal with the SDRAM chip.

3 Example Nios® II System

As an illustrative example, we will add the SDRAM to the Nios II system described in the *Introduction to the Intel Platform Designer Tool* tutorial. Figure 1 gives the block diagram of our example system.

![Diagram](image-url)
Figure 1. Example Nios II system implemented on the DE0-Nano board.
The system realizes a trivial task. Four toggle switches on the DE0-Nano board, SW3 = 0, are used to turn on or off the four green LEDs, LED3 = 0. The switches are connected to the Nios II system by means of a parallel I/O interface configured to act as an input port. The LEDs are driven by the signals from another parallel I/O interface configured to act as an output port. To achieve the desired operation, the four-bit pattern corresponding to the state of the switches has to be sent to the output port to activate the LEDs. This will be done by having the Nios II processor execute an application program. Continuous operation is required, such that as the switches are toggled the lights change accordingly.

The introductory tutorial showed how we can use the Platform Designer tool to design the hardware needed to implement this task, assuming that the application program which reads the state of the toggle switches and sets the green LEDs accordingly is loaded into a memory block in the FPGA chip. In this tutorial, we will explain how the SDRAM chip on the DE0-Nano board can be included in the system in Figure 1, so that our application program can be run from the SDRAM rather than from the on-chip memory.

Doing this tutorial, the reader will learn about:

- Using the Platform Designer tool to include an SDRAM interface for a Nios II-based system
- Timing issues with respect to the SDRAM on the DE0-Nano board

4 The SDRAM Interface

The SDRAM chip on the DE0-Nano board has the capacity of 256 Mbits (32 Mbytes). It is organized as 4M x 16 bits x 4 banks. The signals needed to communicate with this chip are shown in Figure 2. All of the signals, except the clock, can be provided by the SDRAM Controller that can be generated by using the Platform Designer tool. The clock signal is provided separately. It has to meet the clock-skew requirements as explained in section 7. Note that some signals are active low, which is denoted by the suffix N.

![Figure 2. The SDRAM signals.](image-url)
5 Using the Platform Designer tool to Generate the Nios® II System

Our starting point will be the Nios II system discussed in the Introduction to the Intel Platform Designer Tool tutorial, which we implemented in a project called lights. We specified the system shown in Figure 3.

If you saved the lights project, then open this project in the Quartus Prime software and then open the Platform Designer tool. Otherwise, you need to create and implement the project, as explained in the introductory tutorial, to obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 select Memory Interfaces and Controllers > SDRAM > SDRAM Controller Intel FPGA IP and click Add. A window depicted in Figure 4 appears. Set the Data Width parameter to 16 bits, the Row Width to 13 bits, the Column Width to 9 bits, and leave the default values for the rest. Since we will not simulate the system in this tutorial, do not select the option Include a functional memory model in the system testbench. Click Finish.
Now, in the window of Figure 3, there will be an `sdram controller` module added to the design. Rename this module to `sdram`. Connect the SDRAM to the rest of the system in the same manner as the on-chip memory, and export the SDRAM wire port. Double-click on the Base Address of the `sdram` and enter the value 0x08000000 to produce the assignment shown in Figure 5.
To make use of the SDRAM, we need to configure the reset vector and exception vector of the Nios II processor. Right-click on the nios2_processor and then select Edit to reach the window in Figure 6. Select sdram to be the memory device for both reset vector and exception vector, as shown in the figure. Click Finish to return to the System Contents tab and regenerate the system.
The augmented Verilog module generated by the Platform Designer tool is in the file nios_system.v in the project directory nios_system\synthesis. Figure 7 depicts the portion of the code that defines the input and output signals for the module nios_system. As in our initial system that we developed in the introductory tutorial, the 4-bit vector that is the input to the parallel port Switches is called switches_export. The 4-bit output vector is called leds_export. The clock and reset signals are called clk_clk and reset_reset_n, respectively. A new module, called sram, is included. It involves the signals indicated in Figure 2. For example, the address lines are referred to as the output vector sram_wire_addr[12:0]. The data lines are referred to as the inout vector sram_wire_dq[15:0]. This is a vector of the inout type because the data lines are bidirectional.
6 Integration of the Nios® II System into the Quartus® Prime Project

Now, we have to instantiate the expanded Nios II system in the top-level Verilog module, as we have done in the tutorial Introduction to the Intel Platform Designer Tool. The module is named lights, because this is the name of the top-level design entity in our Quartus Prime project.

A first attempt at creating the new module is presented in Figure 8. The input and output ports of the module use the pin names for the 50-MHz clock, CLOCK_50, pushbutton switches, KEY, toggle switches, SW, and green LEDs, LED, as used in our original design. They also use the pin names DRAM_CLK, DRAM_CKE, DRAM_ADDR, DRAM_BA, DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N, DRAM_DQ, and DRAM_DQM, which correspond to the SDRAM signals indicated in Figure 2. All of these names are those specified in the DE0-Nano User Manual and included in the file called DE_Nano.qsf, which can be found on Intel’s DE0-Nano web page at https://www.altera.com/support/training/university/boards.html

Finally, note that we tried an obvious approach of using the 50-MHz system clock, CLOCK_50, as the clock signal, DRAM_CLK, for the SDRAM chip. This is specified by the assign statement in the code. This approach leads to a potential timing problem caused by the clock skew on the DE0-Nano board, which can be fixed as explained in section 7.
// Implements the augmented Nios II system for the DE0-Nano board.
// Inputs: SW3–0 are parallel port inputs to the Nios II system.
// CLOCK_50 is the system clock.
// KEY0 is the active-low system reset.
// Outputs: LED3–0 are parallel port outputs from the Nios II system.
// SDRAM ports correspond to the signals in Figure 2; their names are those
module lights (SW, KEY, CLOCK_50, LED, DRAM_CLK, DRAM_CKE,
 DRAM_ADDR, DRAM_BA, DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N,
 DRAM_WE_N, DRAM_DQ, DRAM_DQM);
 input [3:0] SW;
 input [0:0] KEY;
 input CLOCK_50;
 output [3:0] LED;
 output [12:0] DRAM_ADDR;
 output [1:0] DRAM_BA;
 output DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;
 output DRAM_CKE, DRAM_CS_N, DRAM_WE_N;
 output [1:0] DRAM_DQM;
 inout [15:0] DRAM_DQ;
// Instantiate the Nios II system module generated by the Platform Designer tool
 nios_system NiosII (
 .clk_clk (CLOCK_50),
 .reset_reset_n (KEY[0]),
 .switches_export (SW),
 .leds_export (LED),
 .sdram_wire_addr (DRAM_ADDR),
 .sdram_wire_ba (DRAM_BA),
 .sdram_wire_cas_n (DRAM_CAS_N),
 .sdram_wire_ce (DRAM_CKE),
 .sdram_wire_cs_n (DRAM_CS_N),
 .sdram_wire_dq (DRAM_DQ),
 .sdram_wire_dqm (DRAM_DQM),
 .sdram_wire_ras_n (DRAM_RAS_N),
 .sdram_wire_we_n (DRAM_WE_N)
);

 assign DRAM_CLK = CLOCK_50;
endmodule

Figure 8. A first attempt at instantiating the expanded Nios II system.
As an experiment, you can enter the code in Figure 8 into a file called lights.v. Add this file and all the nios_system.qip file produced by the Platform Designer tool to your Quartus Prime project. Compile the code and download the design into the Cyclone IV FPGA on the DE0-Nano board. Use the application program from the tutorial Introduction to the Intel Platform Designer Tool, which is shown in Figure 9.

```
.equ Switches, 0x00002010
.equ LEDs, 0x00002000
.global _start
_start:
    movia r2, Switches
    movia r3, LEDs
loop:   ldbio r4, 0(r2)
        stbio r4, 0(r3)
br     loop
```

Figure 9. Assembly language code to control the lights.

Use the Intel FPGA Monitor Program, which is described in the tutorial Intel FPGA Monitor Program Tutorial, to assemble, download, and run this application program. If successful, the lights on the DE0-Nano board will respond to the operation of the toggle switches.

Due to the clock skew problem mentioned above, the Nios II processor may be unable to properly access the SDRAM chip. A possible indication of this may be given by the Intel FPGA Monitor Program, which may display the message depicted in Figure 10. To solve the problem, it is necessary to modify the design as indicated in the next section.

Figure 10. Error message in the Intel FPGA Monitor Program that may be due to the SDRAM clock skew problem.
7 Using the Clock Signals IP Core

The clock skew depends on physical characteristics of the DE0-Nano board. For proper operation of the SDRAM chip, it is necessary that its clock signal, DRAM_CLK, leads the Nios II system clock, CLOCK_50, by 3 nanoseconds. This can be accomplished by using a phase-locked loop (PLL) circuit which can be manually created using the IP Catalog. It can also be created automatically using the Clock Signals IP core provided by the Intel FPGA University Program. We will use the latter method in this tutorial.

To add the Clock Signals IP core, in the Platform Designer tool window of Figure 5 select University Program > Clock > System and SDRAM Clocks for DE-Series Boards and click Add. A window depicted in Figure 11 appears. Select DE0-Nano-SoC from the DE Board drop-down list. Click Finish to return to the window in Figure 5.

![Figure 11. Clock Signals IP Core](image)

Remove the system clock component clk_0. All other IP cores (including the SDRAM) should be adjusted to use the sys_clk output of the Clock Signal core. Rename the Clock Signal core to clocks and export the sdram_clk signal under the name sdram_clk, the ref_clk signal under the name clk, and ref_reset signal under the name reset. The final system is shown in Figure 13. Click on Generate > Generate HDL... and regenerate the system.
Next, we have to fix the top-level Verilog module, given in Figure 8, to instantiate the Nios II system with the Clock Signals core included. The desired code is shown in Figure 13. The SDRAM clock signal `sdram_clk` generated by the Clock Signals core connects to the pin `DRAM_CLK`. Note that the `sys_clk` signal is not connected since it is for internal use only.

Figure 12. The final Nios II system.
// Implements the augmented Nios II system for the DE0-Nano board.
// Inputs: SW3–0 are parallel port inputs to the Nios II system.
// CLOCK_50 is the system clock.
// KEY0 is the active-low system reset.
// Outputs: LED3–0 are parallel port outputs from the Nios II system.
// SDRAM ports correspond to the signals in Figure 2; their names are those

module lights (SW, KEY, CLOCK_50, LED, DRAM_CLK, DRAM_CKE,
 DRAM_ADDR, DRAM_BA, DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N,
 DRAM_WE_N, DRAM_DQ, DRAM_DQM);

input [3:0] SW;
input [0:0] KEY;
input CLOCK_50;
output [3:0] LED;
output [12:0] DRAM_ADDR;
output [1:0] DRAM_BA;
output DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;
output DRAM_CKE, DRAM_CS_N, DRAM_WE_N;
output [1:0] DRAM_DQM;
inout [15:0] DRAM_DQ;

// Instantiate the Nios II system module generated by the Platform Designer tool
nios_system NiosII (
 .clk_clk (CLOCK_50),
 .reset_reset (~KEY[0]),
 .switches_export (SW),
 .leds_export (LED),
 .sdram_wire_addr (DRAM_ADDR),
 .sdram_wire_ba (DRAM_BA),
 .sdram_wire_cas_n (DRAM_CAS_N),
 .sdram_wire_cke (DRAM_CKE),
 .sdram_wire_cs_n (DRAM_CS_N),
 .sdram_wire_dq (DRAM_DQ),
 .sdram_wire_dqm (DRAM_DQM),
 .sdram_wire_ras_n (DRAM_RAS_N),
 .sdram_wire_we_n (DRAM_WE_N),
 .sdram_clk_clk (DRAM_CLK)
);

endmodule

Figure 13. Proper instantiation of the expanded Nios II system.

Compile the code and download the design into the Cyclone IV FPGA on the DE0-Nano board. Use the application program in Figure 9 to test the circuit.
Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.