

Using the DDR3 SDRAM on Intel's DE5 Board with VHDL Designs

For Quartus[®] Prime 18.1

1 Introduction

This tutorial explains how DDR3 memory modules connected to Intel's DE5 Development and Education board can be used with a Nios[®] II system implemented by using the Intel[®] Platform Designer tool. The discussion is based on the assumption that the reader has access to a DE5 board and is familiar with the material in the tutorial *Introduction to the Intel Platform Designer Tool* and the tutorial *Intel FPGA Monitor Program Tutorial for Nios II*.

The screen captures in the tutorial were obtained using the Quartus[®] Prime version 18.1; if other versions of the software are used, some of the images may be slightly different.

Contents:

- Example Nios II System
- The DDR3 SDRAM Interface
- Using the Platform Designer tool to Generate the Nios II System
- Integration of the Nios II System into the Quartus Prime Project
- Using the Clock Crossing Bridge IP Core

2 Background

The introductory tutorial *Introduction to the Intel Platform Designer Tool* explains how the memory in an FPGA chip can be used in the context of a simple Nios II system. For practical applications it is necessary to have a much larger memory. The Intel DE5 board contains two DDR3 SODIMM (Small outline dual inline memory modules) slots that can be used to expand the amount of memory available to the FPGA. To provide access to the DDR3 SODIMMs, the Platform Designer tool implements a *DDR3 SDRAM Controller with UniPHY* circuit that is compatible with both DDR3 and DDR3L memory modules. This circuit generates the signals needed to interface with the DDR3 SODIMMs. The DDR3 standard requires careful timing between the memory modules and the system, so the *DDR3 SDRAM Controller with UniPHY* circuit uses a reference clock signal to produce two clock signals: one for the system and one for the memory module.

3 Example Nios[®] II System

As an illustrative example, we will add the DDR3 SDRAM to the Nios II system described in the *Introduction to the Intel Platform Designer Tool* tutorial. Figure 1 gives the block diagram of our example system.

Figure 1. Example Nios II system implemented on the DE5 board.

The system realizes a trivial task. Four toggle switches on the DE5 board, SW3 - 0, are used to turn on or off the four green LEDs, LED3 - 0. The switches are connected to the Nios II system by means of a parallel I/O interface configured to act as an input port. The LEDs are driven by the signals from another parallel I/O interface configured to act as an output port. To achieve the desired operation, the four-bit pattern corresponding to the state of the switches has to be sent to the output port to activate the LEDs. This will be done by having the Nios II processor execute an application program. Continuous operation is required, such that as the switches are toggled the lights change accordingly.

The introductory tutorial showed how we can use the Platform Designer tool to design the hardware needed to implement this task, assuming that the application program which reads the state of the toggle switches and sets the LEDs accordingly is loaded into a memory block in the FPGA chip. In this tutorial, we will explain how DDR3 SODIMMs on the DE5 can be included in the system in Figure 1, so that our application program can be run from the DDR3 SDRAM rather than from the on-chip memory.

Doing this tutorial, the reader will learn about:

- Using the Platform Designer tool to include a DDR3 SDRAM Interface for a Nios II-based system
- Interfacing components clocked by different frequency signals on the DE5 board

4 The DDR3 SDRAM Interface

The signals needed to communicate with the DDR3 SODIMMs are shown in Figure 2. All of the signals can be provided by the DDR3 SDRAM Controller that can be generated by using the Platform Designer tool.

Figure 2. The DDR3 SDRAM signals.

5 Using the Platform Designer tool to Generate the Nios[®] II System

Our starting point will be the Nios II system discussed in the *Introduction to the Intel Platform Designer Tool* tutorial, which we implemented in a project called *lights*. We specified the system shown in Figure 3.

Figure 3. The Nios II system defined in the introductory tutorial.

If you saved the *lights* project, then open this project in the Quartus Prime software and then open the Platform Designer tool. Otherwise, you need to create and implement the project, as explained in the introductory tutorial, to obtain the system shown in the figure.

The DDR3 controller requires you to specify the parameters of your particular DDR3 SODIMM for it to function correctly. A list of necessary parameters are given in Table 1. The tutorial provides the parameters for the K4B2G0846C-HCK0 SODIMM manufactured by Samsung Electronics and supplied with the DE5 at the time of writing. If you use a different memory module, you will have search your module's datasheet for the parameters listed in Table 1.

Memory Parameter	K4B2G0846C-HCK0 Timing Values
Memory device speed	800 MHz
CAS Latency	11 cycles
Row address width	14 bits
Column address width	10 bits
Bank address width	3 bits
Address and control setup to CK clock rise [tIS]	170 ps
Address and control hold after CK clock rise [tIH]	120 ps
Data setup to clock (DQS) rise [tDS]	10 ps
Data hold after clock (DQS) rise [tDH]	45 ps
DQS, DQS to DQ skew, per group, per access [tDQSQ]	100 ps
DQ output hold time from DQS, DQS [tQH]	0.38 cycles
DQS output access time from CK, CK [tDQSCK]	255 ps
First latching edge of DQS to associated clock edge [tDQSS]	0.27 cycles
DQS Differential High Pulse Width [tQSH]	0.4 cycles
DQS falling edge hold time from CK [tDSH]	0.18 cycles
DQS falling edge to CK setup time [tDSS]	0.18 cycles
Memory initialization time at power-up [tINIT]	500 us
Load mode register command period [tMRD]	4 cycles
Active to precharge time [tRAS]	35 ns
Active to read or write time [tRCD]	13.75 ns
Precharge command period [tRP]	13.75 ns
Refresh command interval [tREFI]	7.8 us
Auto-refresh command interval [tRFC]	160 ns
Write recovery time [tWR]	15 ns
Write to read period [tWTR]	4 cycles
Four active window time [tFAW]	30 ns
RAS to RAS delay time [tRRD]	6 ns
Read to precharge time [tRTP]	7.5 ns

Table 1. Parameters for the K4B2G0846C-HCK0 SODIMM supplied with the DE5

To add the DDR3 controller, in the window of Figure 3 select Memory Interfaces and Controllers > Memory Interfaces with UniPHY > DDR3 SDRAM Controller with UniPHY and click Add. A window depicted in Figure 4 appears.

DDR3 SDRAM Controller with UniPHY Intel FPGA IP					D	ocumentatio	n .
alter	a_mem_if_ddr3_emif				Generat	e Example D	esign
Parameters							
Generation of t	he DDR3 Controller wit	h UniPHY produc	es unencrypted P	HY and C	ontroller H	DL,	
constraint scrip	ts, an example design	and a testbench	for simulation.				
Interface Ty	pe						
PHY Settings	Memory Parameters	Memory Timing	Board Settings	Control	er Settings	Diagnostic	s
▼ Genera	l Settings						
Speed Gr	ade:		2 🗸				
Gene	rate PHY only						
T Clocks							_
Memory of	lock frequency:		800.0	MHz			
Achieved	memory clock frequen	cy:	800.0	MHz			
PLL refer	ence clock frequency:		50.0	MHz			
Rate on A	Avalon-MM interface:		Quarter V				
Achieved	local clock frequency:		200.0	MHz			
Enab	le AFI half rate clock						
Advance	ed PHY Settings			1-			
Additiona	l chase for sere to per	inhan transform	0.0	Degree	S		
Supply Ve	ltage:	ipriery u drister.	0.0	Degree	s		
J/O stand	lardı		1.5V DDR3 \	1			
Shadow P	anisters:		55/L-15 V				
PIL sharin	na mode:		Auto V				
DLL shari	ng mode:		No sharing 🗸				
OCT shar	ing mode:		No sharing V				
Reconfig	rable PLL Location:		Top Rottom				
E Enab	le Ping Pong PHV		hob_porrout <				
	ie ning rong PHT						
							>
						_	
							>

Figure 4. Add the DDR3 Controller.

Set the Speed Grade to 2, the Memory clock frequency parameter to 800.0 MHz, the PLL reference clock frequency to 50.0 MHz, Rate on Avalon-MM interface to Quarter, and leave other settings in PHY Settings as default. Click Memory Parameters to show the window in Figure 5

ore	DDR3 SDRAM Contro Intel FPGA IP altera_mem_if_ddr3_emif	oller with UniPHY	Documentation Generate Example Design
rame	ters		
straint	t scripts, an example design and a	testbench for simulation.	na controller HDL,
terfa	се Туре		
HY Set	tings Memory Parameters Memo	ry Timing Board Settings Cor	ntroller Settings Diagnostics
Apply	memory parameters from the man	ufacturer data sheet	
Apply	device presets from the preset list	on the right.	
Memo	ry vendor:	Samsung 🗸	
Memo	ry format:	Unbuffered DIMM 🗸 🗸	
Memo	ry device speed grade:	800.0 v MHz	
Total	interface width:	64	
DQ/D	QS group size:	8 ~	
Numb	er of DQS groups:	8	
Numb	er of slots:	1 ~	
Numb	er of ranks per slot:	1 ~	
Numb	er of clocks:	1 ~	
Row a	address width:	14	
Colum	n address width:	10	
Bank-	address width:	3	
E	nable DM pins		
▼ M	emory Initialization Options		
Mirr	ror Addressing: 1 per chip select:	0	
	Address and command parity		
Мо	de Register 0		
Rea	ad Burst Type:	Sequential 🗸	
DLL	precharge power down:	DLL off 🗸	
Mer	mory CAS latency setting:	11 ~	
Mo	de Register 1		
Out	tout drive strength setting:	P70/7	
Mer	mory additive CAS latency setting:	Displied	
OD	T Rtt nominal value:		
	de Register 2		
MO	ue keyister ∠		
Aut	o seureiresn method:	Manual V	
Self	reresi temperature:	Normal ~	
Mer	nory write CAS latency setting:	8 ~	
Dyr	namic ODT (Rtt_WR) value:	RZQ/4 v	
			3

Figure 5. DDR3 Controller Memory Parameters Window.

Set the Memory vendor to Samsung, the Memory format to Unbuffered DIMM, the Memory device speed grade to 800.0 MHz, the Total interface width to 64, the Row address width to 14, and the Column address width to 10. In the Memory Initialization Options, set the Memory CAS latency setting to 11, Output drive strength setting to RZQ/7, ODT Rtt nominal value to RZQ/6, Memory write CAS latency setting to 8, and Dynamic ODT (Rtt_WR) value to RZQ/4. The other settings should be left at their default values. Click Memory Timing to get to the window shown in Figure 6.

Alter I non If _ddr3_emf Generate Example Deal arameters action of the DDR3 Controller with UnPHY produces unencrypted PHY and Controller HDL, straint scripts, an example design and a testbench for simulation. terface Type HY Settings Memory Parameters Apply timing parameters from the manufacturer data sheet Apply device presets from the manufacturer data sheet Apply timing parameters Diagnostics Apply timing parameters from the manufacturer data sheet Apply device presets from the preset list on the right. US (base): 100 ps UD (base): 100 ps US (base): 0.0 ps UDQSCI: 0.27 cycles US US US UDSSCI: 0.27 cycles US US US UDSSCI: 0.18 cycles US US US UNRI: 0.18 cycles US US US MRDD: 4 cycles US US US URRS: 13.75 ns US US US URR: 13.75 ns US US US URR: 13.00 ns US US US URR: 13.00 ns US<	E Int			Documentation
arameters relation of the DR3 Controller with UnPHY produces unencrypted PHY and Controller HDL, straint scripts, an example design and a testbench for simulation. tertace Type HY Settings Memory Timing Board Settings Controller Settings Diagnostics Apply timing parameters from the manufacturer data sheet Apply device presets from the preset list on the right. US (base): 10 ps 101 ps 10 ps 10 ps 102 (Soase): 10 ps 10 ps 103 (Soase): 10 ps 10 ps 104 (base): 45 ps 10 ps 102 (SCR): 255 ps 10 ps 102 (SCR): 0.18 cycles 10	oro' altera	a_mem_if_ddr3	r _emif	Generate Example Desig
Water State S				
leration of the DUR3 Controller with Uni-HY produces unencrypted PHY and Controller HDL, straint scripts, an example design and a testbench for simulation. terface Type TY Settings Memory Parameters from the manufacturer data sheet Apply device presets from the preset list on the right. IS (base): 170 ps 45 ps 100 ps 101 ps 102 102 ps 102 103 ps 102 104 0.38 cycles 105 10 0.38 cycles 105 10 0.4 cycles 105 10 0.18 cycles 105 10 0.18 cycles 105 10 0.18 cycles 105 10 13.75 ns 117 14 15 15 15 15 15 15 15 15 15 15 15 15 15	rameters			
terface Type HT Settings Memory Parameters Memory Timing Board Settings Controller Settings Diagnostics Apply timing parameters from the manufacturer data sheet Apply device presets from the preset list on the right. If an and the preset list on the right. If an and the preset list on the right. If an and the preset list on the right. 125 (base): 120 ps If an and the preset list on the right. If an and the preset list on the right. 105 (base): 120 ps If an and the preset list on the right. If an and the preset list on the right. 105 (base): 100 ps If an and the preset list on the right. If an and the preset list on the right. 105 (base): 100 ps If an and the preset list on the right. If an and the preset list on the right. 105 (base): 0.38 cycles If an and the preset list on the right. If an and the preset list on the right. 105 (base): 0.4 cycles If an and the preset list on the right. If an and the preset list on the right. If an and the preset list on the right. 105 (base): 0.18 cycles If an and the pris a	neration of th Istraint script	e DDR3 Contro s, an example (ler with UniPHY produces unencrypted PHY and design and a testbench for simulation.	Controller HDL,
Decrease by the set of the set o				
Apply time parameters from the meast last on the right. Apply drive presets from the meast last on the right. UIS (base): 170 ps UIA (base): 120 ps UDS (base): 100 ps UDS (base): 0.38 cycles UDSQCV: 255 ps UDSSS: 0.17 cycles UDSS: 0.18 cycles UDSS: 0.18 cycles UNTI: 500 us MRRD: 4 cycles URP: 13.75 ns REFEI: 7.8 us VWR: 15.0 ns VWR: 15.0 ns VWR: 15.0 ns VWR:		Momory Daram	ators Memory Timing Reard Sattings Contro	ller Cottings Disgonatics
Apply functor presents from the manufacturer data sheet Apply device presents from the present lix on the right. UIS (base): 170 ps UIM (base): 120 ps US (base): 10 ps US (base): 10.0 ps US (base): 0.33 cydes US (base): 0.4 cydes US (base): 0.18 cydes UNT: 0.18 cydes URA: 15.0 ns RECEI: 7.3 ns UVR: 15.0 ns UVR: 15.0 ns UVR: 15.0 ns UVR:	ni setungs	Memory Paran	leters richory mining board settings Condit	bier setungs Diagnosucs
III (Jac) III (Jac) III (Jac) III (Jac) Jac) Jac) III (Jac) Jac) </td <td>Apply timing Apply device</td> <td>parameters fro presets from t</td> <td>om the manufacturer data sheet the preset list on the right.</td> <td></td>	Apply timing Apply device	parameters fro presets from t	om the manufacturer data sheet the preset list on the right.	
tH (base): I20 ps tDS (base): IA ps tDV (base): 45 ps tDQSCV: IA cydes tDQSCV: IA cydes tDQSCV: IA cydes tDSH: IA cydes tDSH: IA cydes tDSH: IA cydes tDRM: IA cydes tMRD: IA cydes tRAS: IA cydes tRAS: IA cydes tRAS: IA s <	tIS (base):	170	ps	
tDC (base): 10 ps tDV (base): 45 ps tDQSQ: 10 ps tDQSQ: 10.0 ps tDQSQ: 25.0 ps tDQSM: 25.0 ps tDQSM: 0.4 cydes tDSM: 0.18 cydes tDSM: 13.75 ns tRAS: 35.0 ns tRM: 1.75 ns tRF: 15.0 ns tWR: 15.0 ns	tIH (base):	120	ps	
bD4 (base) 45 ps tDQS 10 ps tDQH 0.38 cydes tDQSC 255 ps tDQSS 0.77 cydes tQSM 0.4 cydes tDSM 0.4 cydes tDSM 0.18 cydes tDSM 35.0 ns tRAC 35.0 ns tRAC 13.75 ns tRAC 16.0 ns tWR 16.0 ns tWR 15.0 ns tMRN 4 cydes tARA ns td>td>td>td>td>td tWR 15.0 ns tWR 0.0 ns tWR 0.0 ns	tDS (base):	10	ps	
tDQSQ: 10 ps tDQH: 0.38 cydes tDQSCK 255 ps tDQSS: 0.27 cydes tDQSS: 0.27 cydes tDSS: 0.18 cydes tDSS: 0.18 cydes tDSS: 0.18 cydes tDSS: 0.18 cydes tDSS: 0.13 cydes tDSS: 0.13 cydes tDSS: 0.13 cydes tDSS: 1.15 cydes tDSS: 1.15 ns tMRD: 13.75 ns tRF: 13.75 ns tRF: 15.0 ns tWR: 15.0 ns tWR: 15.0 ns tWR: 6.0 ns tRR: 6.0 ns	tDH (base):	45	ps	
tQH: 0.38 cydes tDQSCV: 255 ps tDQSS: 0.27 cydes tDQSS: 0.27 cydes tDSS: 0.17 cydes tDSS: 0.18 cydes tDSS: 1.15 ns tPACD: 13.75 ns tBRCE: 15.0 ns tPAC: 15.0 ns tPAC: 15.0 ns tPAC: 15.0 ns tPAC: 10.0 ns tPAC: 10.0 ns tPAC: 10.0 ns	tDQSQ:	10	ps	
DQSCK: 255 ps tDQS: 0.27 cydes tQSH: 0.4 cydes tDSH: 0.18 cydes tDSS: 0.18 cydes tDNT: 000 us tMRD: 4 cydes tRAS: 55.0 ns tRAS: 13.75 ns tRAC: 1.75 ns tRAF: 7.8 us tRAF: 1.60.0 ns tRAF: 1.5.0 ns tRAF: 5.0 ns tRAF: 1.60.0 ns tRAF: 1.5.0 ns tRAF: 1.5.0 ns tRAF: 1.5.0 ns tRAF: 1.0 ns	tQH:	0.38	cycles	
tDQSS: 0.27 cydes tQSH: 0.4 cydes DDSH: 0.18 cydes tDSS: 0.18 cydes tDST: 50.0 us tMRD: 4 cydes tRAS: 35.0 ns tRCD: 13.75 ns tRFI: 7.8 us tWR: 15.0 ns	tDQSCK:	255	ps	
QSH: 0.4 cydes DSH: 0.18 cydes DSS: 0.18 cydes DSS: 0.18 cydes HNT: 500 us tMRD: 4 cydes tRAS: 35.0 ns tRCD: 13.75 ns tRFF: 15.75 ns tRFF: 160.0 ns tWR: 15.0 ns tWR: 15.0 ns tWR: 15.0 ns tWR: 30.0 ns tRAD: 6.0 ns tWR: 15.0 ns	tDQSS:	0.27	cycles	
DSH: 0.18 cycles tDSS: 0.18 cycles tDNT: 500 us MRD: 4 cycles tRAS: 35.0 ns tRCD: 13.75 ns tRFE: 7.8 us tRFE: 15.0 ns tWR: 4 cycles tWR: 15.0 ns tWR: 6.0 ns tWR: 30.0 ns tRAN: 30.0 ns tRRP: 6.0 ns	tQSH:	0.4	cycles	
DSS: 0.18 cycles thVTT: 500 us thVRD: 4 cycles tRAS: 35.0 ns tRAD: 13.75 ns tRAF: 15.75 ns tRFF: 7.8 us tRFC: 150.0 ns tWR: 55.0 ns tWR: 15.0 ns tWR: 4 cycles tFAN: 30.0 ns tRRP: 6.0 ns tRRP: 7.5 ns	tDSH:	0.18	cycles	
tNT: 500 us tMRD: 4 cycles BAAS: 35.0 ns tRCD: 13.75 ns tRFP: 13.75 ns tRFP: 13.75 ns tRFP: 15.0 ns tRFC: 160.0 ns tWR: 4 cycles tMWR: 0.0 ns tWR: 6.0 ns tRXP: 6.0 ns	tDSS:	0.18	cycles	
tMRD: 4 cydes tRAS: 35.0 ns tRACD: 13.75 ns tRAF: 13.75 ns tREFI: 7.8 us tRFC: 160.0 ns tWR: 15.0 ns tWR: 4 cydes tFAW: 30.0 ns tRRD: 6.0 ns tRTP: 7.5 ns	tINIT:	500	us	
tRAS: 35.0 ns tRCD: 13.75 ns tRP: 13.75 ns tRP: 13.75 ns tRFET: 7.8 us tRFC: 160.0 ns tWR: 15.0 ns tWR: 4 cydes tFAW: 30.0 ns tRRD: 6.0 ns tRTP: 7.5 ns	tMRD:	4	cycles	
RCD: 13.75 ns tRP: 13.75 ns tREFI: 7.8 us tRFC: 160.0 ns tWR: 15.0 ns tVTR: 4 cydes tFAW: 30.0 ns tRRP: 6.0 ns	tRAS:	35.0	ns	
tRP: 13.75 ns tREF1: 7.8 us tRFC: 160.0 ns tWR: 15.0 ns tWTR: 4 cydes tFAW: 30.0 ns tRRD: 6.0 ns tRTP: 7.5 ns	tRCD:	13.75	ns	
tREFI: 7.8 us tRFC: 160.0 ns tWR: 15.0 ns tWTR: 4 cydes tFAW: 30.0 ns tRRD: 6.0 ns tRTP: 7.5 ns	tRP:	13.75	ns	
IBFC: I60.0 ns tWR: 15.0 ns tWTR: 4 cycles tFAW: 30.0 ns tRRD: 6.0 ns RTP: 7.5 ns	tREFI:	7.8	us	
tWR: 15.0 ns tWTR: 4 cycles tFAW: 30.0 ns tRRD: 6.0 ns tRTP: 7.5 ns	tRFC:	160.0	ns	
tWTR: 4 cydes tFAW: 30.0 ns tRRD: 6.0 ns tRTP: 7.5 ns	tWR:	15.0	ns	
UFAW: 30.0 ns tRRD: 6.0 ns tRTP: 7.5 ns	tWTR:	4	cycles	
tRRD: 6.0 ns tRTP: 7.5 ns	tFAW:	30.0	ns	
tRTP: 7.5 ns	tRRD:	6.0	ns	
	tRTP:	7.5	ns	

Figure 6. DDR3 Controller Memory Timing Window.

Set the timing parameters to the values shown in Table 1 then click on Board Settings to get to the window shown in Figure 7.

	DDR3 SDRAM Controller with UniPHY		<u>D</u> ocumentation	
egaCore'	altera_mem_if_ddr3_emif	Gener	rate Example Desigr	n
				^
Paran	neters			_
Generat constrai	tion of the DDR3 Controller with UniPHY produces unencrypted PHY int scripts, an example design and a testbench for simulation.	(and Controller	HDL,	
Interf	асе Туре			
PHY S	ettings Memory Parameters Memory Timing Board Settings C	Controller Setting	gs Diagnostics	
The effe rate <i>The</i>	wizard supports single- and multi-rank configurations. Altera has d ects on the output signaling of these configurations and has stored e and the channel uncertainty within the UnPHY MegaWizard. see values are representative of specific Altera boards. You must d board level effects for your board. You can use HyperLynx or sim	letermined the the effects on <i>hange the value</i> lar simulators to	the output slew es to account for obtain	
valu	ues that are representative of your board. Setup and Hold Derating			
Þ.	Channel Cignal Integrity			_
	Channel Skonal Inteorny			
*	Board Skews			
Pi	Board Skews Board Skews CB traces can have skews between them that can cause timing mar kews between different ranks can further reduce the timing margin	rgins to be redu in multi-rank to	iced. Furthermore pologies.	
Pi Sł	Board Skews CB traces can have skews between them that can cause timing man kews between different ranks can further reduce the timing margin Restore default values	rgins to be redu in multi-rank to	iced. Furthermore pologies.	
Pi Sł	Board Skews CB traces can have skews between them that can cause timing markews between different ranks can further reduce the timing margin Restore default values PFGA DQ/DQS package skews deskewed on board	rgins to be redu in multi-rank to	iced. Furthermore pologies.	
Pr Sł	Board Secus Board Secus CB traces can have skews between them that can cause timing markers between different ranks can further reduce the timing margin Restore default values PFGA DQ/DQS package skews deskewed on board PFGA Address/Command package skews deskewed on board	rgins to be redu in multi-rank to	ced. Furthermore pologies.	
Pi Sł E	Board Squar Incegnity Board Skews CB traces can have skews between them that can cause timing markews between different ranks can further reduce the timing margin Restore default values PFGA 20/DQS package skews deskewed on board PFGA 20/DQS package skews deskewed on board taximum CK delay to DIMM/device:	rgins to be redu in multi-rank to 1.78	ced. Furthermore pologies.	
Pi sk E E M	Board Skews Board Skews Board Skews Board Skews Board Skews Restore default values PFGA D0/DQS package skews deskewed on board FFGA Address/Command package skews deskewed on board laximum DQS delay to DIMM/device:	rgins to be redu in multi-rank to 1.78 0.7	ced. Furthermore pologies.	
Pri sł E M M	Board Skews Board Skews Board Skews Board Skews Board Skews Restore default values PFGA DQ/DQS package skews deskewed on board PFGA Address/command package skews deskewed on board laximum CK delay to DIMM/device: Iaximum DQS delay to DIMM/device: Iaximum DQS defare to DIMM/device: IIIII DATA DATA DATA DATA DATA DATA DATA	rgins to be redu in multi-rank to 1.78 0.7 0.06	ced. Furthermore pologies.	
Pi sł E M M M	Board Signal Integrity Restore default values FPGA DQ/DQS package skews deskewed on board FPGA Address/Command package skews deskewed on board Isavimum CK delay to DIMM/device: Isavimum delay difference between CK and DQS: Isavimum delay difference between CK and DQS:	rgins to be redu in multi-rank to 1.78 0.7 0.06 1.29	ced. Furthermore pologies.	
Pi Sł E M M M	Board Signal Integrity Restore default values FPGA DQ/DQS package skews deskewed on board FPGA Address/Command package skews deskewed on board FPGA Address/Command package skews deskewed on board Isavimum CK delay to DIMM/device: Isavimum delay difference between CK and DQS: Isavimum delay difference between CK and DQS: Isavimum delay difference between CK and DQS: Isavimum BogS enday for Signal Integrity	rgins to be redu in multi-rank to 1.78 0.7 0.06 1.29 0.009	ced. Furthermore pologies. ns ns ns ns ns	
PH SH E M M M M M	Board Skews CB traces can have skews between them that can cause timing markews between different ranks can further reduce the timing margin PFGA DQ/DQS package skews deskewed on board FFGA Address/Command package skews deskewed on board FFGA Address/Command package skews deskewed on board taximum CK delay to DIMM/device: Inimum delay difference between CK and DQS: Iaximum skew within DQS group: Iaximum skew between DQS groups:	rgins to be redu in multi-rank to 1.78 0.7 0.06 1.29 0.009 0.1	ced. Furthermore pologies. ns ns ns ns ns ns	
PH SH E E M M M M A	Bioard Skews Bioard Skews Bioard Skews Bioard Skews Bioard Skews Restore default values PFGA DQ/DQS package skews deskewed on board PFGA Address/Command package skews deskewed on board PFGA Address/Command package skews deskewed on board taximum QS delay to DIMM/device: Inimum delay difference between CK and DQS: Iaximum delay difference between CK and DQS: Iaximum skew within DQS groups: Iaximum skew between DQS groups: Iaximum Skew between DQ and DQS; Iaximum Skew between DQS groups:	rgins to be redu in multi-rank to 1.78 0.7 0.06 1.29 0.009 0.1 0.002	ced. Furthermore pologies. ns ns ns ns ns ns ns ns	
Pi sł E M M M M M	Chammer Signar Integrity Board Skews CB traces can have skews between them that can cause timing margin Restore default values FPGA DQ/DQS package skews deskewed on board FPGA Address/command package skews deskewed on board FPGA Address/command package skews deskewed on board taximum CK delay to DIMM/device: Inimum delay difference between CK and DQS: Iaximum delay difference between CK and DQS: Iaximum skew within DQS group: Iaximum skew within Address and command bus:	rgins to be redu in multi-rank to 1.78 0.7 0.06 1.29 0.009 0.1 0.009 0.1 0.002 0.05	ced. Furthermore pologies.	
Pi sk E M M M M A A	Board Signal Integrity PFGA Address/Command package skews deskewed on board PFGA Address/Command package skews deskewed on board Restore default values PFGA Address/Command package skews deskewed on board PFGA Address/Command package skews deskewed on board PFGA Address/Command package skews deskewed on board Integrity PFGA Address/Command package skews deskewed on board Isaximum Ockelay to DIMM/device: Isaximum delay difference between OX and DQS: Isaximum skew within DQS group: Isaximum skew within address and command DuS: Werage delay difference between DQ and DQS: Isaximum skew within address and command bus: Werage delay difference between OX and DQS: Isaximum skew within address and command and CX:	rgins to be redu in multi+rank to 0.7 0.06 1.29 0.009 0.1 0.002 0.05 0.012	ced. Furthermore pologies.	
Pi Si E M M M M M A A A	Board Skews CB traces can have skews between them that can cause timing matews between different ranks can further reduce the timing margin Restore default values FPGA DQ/DQS package skews deskewed on board FPGA Address/Command package skews deskewed on board FPGA Address/Command package skews deskewed on board taximum CK delay to DIMM/device: Iaximum DQS delay to DIMM/device: Iaximum delay difference between CK and DQS: Iaximum skew within DQS group: verage delay difference between DQ and DQS: Iaximum skew within address and command bus: verage delay difference between address and command and CK;	rgins to be redu in multi-rank to 0.7 0.06 1.29 0.009 0.1 0.002 0.05 0.012	ccd. Furthermore pologies. ns ns ns ns ns ns ns ns ns ns	
PP SI E E E M M M M M M M M M M M A A A	Board Skews Board Skews Board Skews Board Skews CB traces can have skews between them that can cause timing margin Restore default values PFGA DQ/DQS package skews deskewed on board PFGA Address/Command package skews deskewed on board PFGA Address/Command package skews deskewed on board taximum DQS delay to DIMM/device: Inimum delay difference between CK and DQS: Iaximum skew within DQS groups: Verage delay difference between DQ and DQS: Iaximum skew within address and command and CK: Verage delay difference between address and command and CK:	rgins to be redu in multi-rank to 0.7 0.06 1.29 0.09 0.1 0.002 0.002 0.05 0.012	ced. Furthermore pologies. ns ns ns ns ns ns ns ns ns ns ns	
PP SH	Chamer Signal Integrity Board Skews CB traces can have skews between them that can cause timing margin Restore default values FPGA DQ/DQS package skews deskewed on board FPGA Address/Command package skews deskewed on board FPGA Address/Command package skews deskewed on board laximum QCS delay to DIMM/device: Inimum delay difference between CK and DQS: Iaximum delay difference between CK and DQS: Iaximum gkew within DQS group: Iaximum skew within DQS group: Iaximum skew within address and command bus: werage delay difference between address and command and CK:	rgins to be redu in multi-rank to 0.7 0.06 1.29 0.009 0.1 0.002 0.05 0.012	ced. Furthermore pologies.	

Figure 7. DDR3 Controller Board Settings Window.

In the Board Skews sub-menu, check FPGA DQ/DQS package skews deskewed on board and FPGA Address/Command package skews deskewed on board then set the other board skew parameters according to the values in Table 2.

Board Skew Parameter	Value (ns)
Maximum CK delay to DIMM/device	1.78
Maximum DQS delay to DIMM/device	0.7
Minimum delay difference between CK and DQS	0.06
Maximum delay difference between CK and DQS	1.29
Maximum skew within DQS group	0.009
Maximum skew between DQS groups	0.1
Average delay difference between DQ and DQS	0.002
Maximum skew within address and command bus	0.05
Average delay difference between address and command and CK	0.012

Table 2. Board Skew Parameters

If you wish to save the settings of this controller to save time when making another system, press New in the lowerright of the window shown in Figure 7. This will open up a dialog that allows you to give your preset a name and then save it. Now in Figure 8 press Finish to add the component to Platform Designer. Right-click on the component and rename it to *DDR3_Controller*. You should now have the system shown in Figure 8.

Figure 8. Platform Designer system with the new DDR3 Controller.

Make the following connections:

- Connect the *pll_ref_clk* port of *DDR3_Controller* to the *clk* port of *clk_0*.
- Connect *global_reset* and *soft_reset* ports of *DDR3_Controller* to *clk_reset* port of *clk_0*.
- Connect the *jtag_debug_module_reset* port of the Nios II processor to the *soft_reset* port of *DDR3_Controller*.
- Connect the clock input of the *nios2_processor*, *onchip_memory*, *switches*, *LEDs*, and *jtag_uart* to the clock output, *afi_clk* of *DDR3_Controller*.
- Connect the data_master and instruction_master ports of the NIOS II processor to the avl port of DDR3_Controller.

Double click on the *avl* base address of the *DDR3_Controller* and set it to **0x4000_0000**. Your system should now look similar to the one in Figure 9. Right-click on the Nios II processor component to get to the window in Figure 10. Set the Reset Vector memory and Exception Vector memory to DDR3_Controller.avl and press Finish to return to the window in Figure 9. Click on Generate HDL... > Generate to generate your system and then close Platform Designer.

For Quartus[®] Prime 18.1

Figure 9. Final Platform Designer system with DDR3 Controller.

ancira_nosz_qsys			Docun
re Nios II Caches and Memory I	interfaces Advanced Features	MMU and MPU Settings JTAG Deb	ug Module
Select a Nios II Core			
lios II Core:	Nios II/e		
	◯ Nios II/s		
	◯ Nios II/f		
	Nios II/e	Nios II/s	Nios II/f
Nios II Selector Guide	RISC 32-bit	RISC 32-bit Instruction Cache Branch Prediction Hardware Multiply Hardware Divide	RISC 32-bit Instruction Cache Branch Prediction Hardware Multiply Hardware Divide Barrel Shifter Data Cache Dynamic Branch Prediction
Memory Usage (e.g Stratix IV)	Two M9Ks (or equiv.)	Two M9Ks + cache	Three M9Ks + cache
Reset Vector			
NCSCL VCCLUI			
Reset vector memory:	DDR3_Controller.avl	\sim	
Reset vector memory: Reset vector offset:	DDR3_Controller.avl 0x00000000	~	
leset vector memory: leset vector offset: leset vector:	DDR3_Controller.avl 0x00000000 0x40000000	~	
Leset vector memory: Leset vector offset: Leset vector: Exception Vector	DDR3_Controller.avl 0x00000000 0x40000000	~	
Leset vector memory: Leset vector offset: Leset vector: Exception Vector Exception vector memory:	DDR3_Controller.avl 0x00000000 0x40000000 DDR3_Controller.avl	~	
Eset vector memory: teset vector offset: teset vector: Exception Vector cxception vector memory: ixception vector offset:	DDR3_Controller.avl 0x0000000 0x40000000 DDR3_Controller.avl nios2_qsys_0.jtag_deb	v ug_module	
eset vector memory: eset vector offset: eset vector: Exception Vector xception vector memory: xception vector offset: xception vector:	DDR3_Controller.avl 0x0000000 0x40000000 DDR3_Controller.avl nlos2_gsys_0_titag_deb DDR3_Controller.avl onchip_memory2_0.st	v ug_module	
eset vector memory: Leset vector offset: Leset vector: Exception Vector Xception vector memory: Xception vector offset: Xception vector offset: MHIL and MPII	DDR3_Controller.avl 0x0000000 0x40000000 DDR3_Controller.avl nios2_qsys_0.jtag_det DDR3_Controller.avl onchip_memory2_0.s1	v ug_module	
Exception Vector Exception Vector Exception Vector Exception vector offset: Exception vector offset: Exception vector MHU and MPU Technick MMI	DDR3_Controller.avl 0x0000000 0x40000000 DDR3_Controller.avl DDR3_Controller.avl onchip_memory2_0.s1 Absolute None	v ug_module	
eset vector offset: eset vector offset: eset vector: Exception Vector Exception Vector memory: xception vector offset: xception vector: HMU and MPU Include MMU	DR3_Controller.avl 0x0000000 0x40000000 DDR3_Controller.avl nios2_osys_0_1tgdeb DDR3_Controller.avl onchp_memory2_0.s1 Absolute None	v ug_module	
eset vector offset: eset vector offset: eset vector: Exception Vector xception vector memory: xception vector offset: xception vector: MHU and MPU Indude MMU Indude the MMU using an op at T.8 Min Exception uctor of	DDR3_Controller.avl 0x00000000 0x40000000 DDR3_Controller.avl nics2_gsys_0_tigdet DDR3_Controller.avl onchip_memory2_0.s1 Absolute None	v ug_module upports an MMU.	
eset vector memory: eset vector offset: eset vector: Exception Vector xception vector memory: xception vector offset: xception vector offset: MHU and MPU Include MMU Include MMU Include the MMU using an op ast TLB Mis Exception vector m ast TLB Mis Exception vector m	DDR3_Controller.avl DDR3_Controller.avl DDR3_Controller.avl DDR3_Controller.avl nlos2_qsys_0.jtag_deb DDR3_Controller.avl nordhip_memory2_0.s1 Absolute None errating system that explicitly si errating system that explicitly si errating system that explicitly si	ug_module upports an MMU.	
eset vector memory: eset vector offset: eset vector remory: Exception Vector memory: xception vector offset: xception vector offset: xception vector offset: MHU and HPU Include MMU include the MMU using an op ast TLB Miss Exception vector of ast TLB Miss Exception vector of	DDR3_Controller.avl 0x0000000 0x40000000 DDR3_Controller.avl nods2_qsys_0.jtag_det DDR3_Controller.avl nodbj_memory2_0.s1 Absolute None energy [None fset: 0x00000000	v ug_module pports an MMU.	

Figure 10. Changing the reset and exception vectors of the NIOS II processor.

6 Integration of the Nios[®] II System into the Quartus[®] Prime Project

Now, we have to instantiate the expanded Nios II system in the top-level VHDL entity, as we have done in the tutorial *Introduction to the Intel Platform Designer Tool*. The entity is named *lights*, because this is the name of the top-level design entity in our Quartus Prime project.

The new top-level entity is presented in Figure 11. The input and output ports of the entity use the pin names for the 50-MHz clock, *CLOCK_50*, pushbutton switches, *KEY*, toggle switches, *SW*, and LEDs, *LED*, as used in our original design. They also use the pin names *DDR3A_A*, *DDR3A_BA*, *DDR3A_CAS_n*, *DDR3A_CK*, *DDR3A_CKE*, *DDR3A_CK_n*, *DDR3A_CS_n*, *DDR3A_DM*, *DDR3A_DQ*, *DDR3A_DQS*, *DDR3A_DQS_n*, *DDR3A_ODT*, *DDR3A_RAS_n*, *DDR3A_RESET_n*, *DDR3A_WE_n*, and *RZQ_4*, which correspond to the DDR3 SDRAM signals indicated in Figure 2. The names are the ones cited in the DE5 User Manual and are included in the file called *DE5.qsf*. The QSF file is included in the design files for this tutorial.

```
For Quartus<sup>®</sup> Prime 18.1
```

```
// Implements the augmented Nios II system for the DE5 board.
// Inputs: SW3-0 are parallel port inputs to the Nios II system.
            BUTTONO is the active-low system reset.
11
// Outputs: LEDR3-0 are parallel port outputs from the Nios II system.
11
             DDR3 ports correspond to the signals in Figure 2; their names
11
             are those used in the DE5 User Manual.
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
ENTITY lights IS
    PORT (
        SW : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
       BUTTON : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
       OSC 50 B7D, RZQ 4 : IN STD LOGIC;
       LED : OUT STD LOGIC VECTOR(7 DOWNTO 0);
       DDR3A A : OUT STD LOGIC VECTOR (13 DOWNTO 0);
       DDR3A_BA : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
       DDR3A_CAS_n, DDR3A_RAS_n, DDR3A_WE_n : OUT STD_LOGIC_VECTOR (0 DOWNTO 0);
       DDR3A_RESET_n : OUT STD_LOGIC;
       DDR3A_CK, DDR3A_CK_n : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
       DDR3A_CKE, DDR3A_CS_n, DDR3A_ODT : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
       DDR3A_DM : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
       DDR3A_DQ : INOUT STD_LOGIC_VECTOR (63 DOWNTO 0);
       DDR3A_DQS, DDR3A_DQS_n : INOUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END lights;
ARCHITECTURE Structure OF lights IS
    COMPONENT nios_system
       PORT (
           clk_clk : IN STD_LOGIC;
           reset_reset_n : IN STD_LOGIC;
            switches export: IN STD LOGIC VECTOR(7 DOWNTO 0);
           leds_export : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
           memory mem a : OUT std logic vector(13 DOWNTO 0);
                                std_logic_vector(2 DOWNTO 0);
           memory_mem_ba : OUT
           memory_mem_ck : OUT std_logic_vector(0 DOWNTO 0);
           memory_mem_ck_n : OUT std_logic_vector(0 DOWNTO 0);
           memory mem cke : OUT std logic vector(0 DOWNTO 0);
           memory_mem_cs_n : OUT std_logic_vector(0 DOWNTO 0);
           memory_mem_dm : OUT std_logic_vector(7 DOWNTO 0);
           memory_mem_ras_n : OUT std_logic_vector(0 DOWNTO 0);
           memory_mem_cas_n : OUT std_logic_vector(0 DOWNTO 0);
           memory_mem_we_n : OUT std_logic_vector(0 DOWNTO 0);
           memory_mem_reset_n : OUT
                                      std logic;
           memory_mem_dq : INOUT std_logic_vector(63 DOWNTO 0);
           memory_mem_dqs : INOUT std_logic_vector(7 DOWNTO 0);
           memory_mem_dqs_n : INOUT std_logic_vector(7 DOWNTO 0);
           memory_mem_odt : OUT
                                  std_logic_vector(0 DOWNTO 0);
           oct rzgin : IN std logic);
    END COMPONENT;
```

BEGIN

```
-- Instantiate the Nios II system entity generated by the Qsys tool.
    NiosII: nios_system
    PORT MAP (
                                  => OSC_50_B7D,
         clk clk
         reset_reset_n => BUTTON(0),
switches_export => SW,
          leds_export => LED,
          memory_mem_a
                              => DDR3A_A,
          memory_mem_ba
                                  => DDR3A_BA,
          memory_mem_ck
                                  => DDR3A_CK,
         memory_mem_ck > DDR3A_CK_n,
memory_mem_ck => DDR3A_CKE,
memory_mem_cs_n => DDR3A_CS_n,
memory_mem_ras_n => DDR3A_RAS_n,
          memory_mem_cas_n => DDR3A_CAS_n,
          memory_mem_we_n
                                  => DDR3A WE n,
          memory_mem_reset_n => DDR3A_RESET_n,
         memory_mem_dq => DDR3A_DQ,
memory_mem_dqs => DDR3A_DQS,
memory_mem_dqs_n => DDR3A_DQS_n,
         memory_mem_odt => DDR3A_ODT,
oct.rzgin => RZQ_4);
END Structure;
```

Figure 11. The top-level entity that instantiates the expanded Nios II system. (Part *b*).

Perform the following:

- Enter the code in Figure 11 into a file called *lights.vhd*. Add this file and the *nios_system.qip* file produced by the Platform Designer tool to your Quartus Prime project.
- Import the pin assignments from the QSF file included in the design files for this tutorial.
- Perform analysis and synthesis of the design by clicking Processing > Start > Analysis and Synthesis
- Click Tools > Tcl Scripts... to open the window in Figure 12. Select and run the script Project > nios_system > synthesis > submodules > nios_system_DDR3_Controller_p0_pin_assignments.tcl; the script is required to correctly set the differential pins needed by the DDR3 SDRAM Interface.
- Compile the project.
- Use the Intel FPGA Monitor Program, which is described in the tutorial *Intel FPGA Monitor Program Tutorial for Nios II* to download and test the system on the DE5 board. Use the assembly program from the tutorial *Intel FPGA Monitor Program Tutorial for Nios II* to test the system; it has been reproduced for you in Figure 13.

Figure 12. TCL Scripts window in Quartus Prime.

If successful, the lights on the DE5 board will respond to the operation of the toggle switches.

Figure 13. Assembly language code to control the lights.

7 Using the Clock Crossing Bridge IP Core

A clock crossing bridge allows components clocked by different frequency clock signals to interface and work with each other. This allows you to have low-speed and high-speed components in the same system without compromising the performance of your high-speed components. We will now modify our Nios system so that the human interface components (LEDs and switches) are run by a 50 MHz clock and the other components are run by the clock generated by the DDR3 SDRAM controller component.

Add the clock crossing bridge component to your Platform Designer system by selection Basic Functions > Bridges and Adaptors > Memory Mapped > Avalon-MM Clock Crossing Bridge. The window in Figure 14 will appear. Accept the default settings and press Finish. Right-click on the component and rename it *Clock_Crossing_Bridge*.

Avalon-MM Clock Crossing Bridge - mm_d	ock_crossing_bridge_0	×
Avalon-MM Clock Crossin altera_avalon_mm_dock_crossing_bridg	ng Bridge	Documentation
* Block Diagram		
Show signals	Data	
	Sumbal widths	32
mm clock crossing bridge 0	Symbol width:	8
	▼ Address	
m0_clk clock avalon m0	Address width:	10
m0_reset	Use automatically-determined addres	ss width
s0_clk	Automatically-determined address width:	10
s0 reset	Address units	10
reset	Hudi Cas di Ita.	STMBULS V
avalon	▼ Burst	
altera_avalon_mm_clock_crossing_bridge	Maximum burst size (words):	1 ~
	▼ FIFOs	
	Command FIFO depth:	4 🗸
	Response FIFO depth:	4 🗸
	Master clock domain synchronizer depth:	2
	Slave clock domain synchronizer depth:	2
		Cancel Finish

Make the following changes to your Nios system:

- Remove the connections from the *data_master* port of *nios2_processor* and the *s1* ports of *switches* and *LEDs*.
- Connect the *m0* port of *Clock_Crossing_Bridge* to the *s1* ports of *switches* and *LEDs*.
- Connect the data_master port of nios2_processor to the s0 port of Clock_Crossing_Bridge.
- Connect the *clk* port of *clk_0* to the *s0_clk* port of *Clock_Crossing_Bridge* and the *clk* ports of *switches* and *LEDs*.
- Connect the *afi_clk* port of *DDR3_Controller* to the *m0_clk* port of *Clock_Crossing_Bridge*.
- Connect the *jtag_debug_module_reset* of *nios2_processor* to the *m0_reset* and *s0_reset* ports of *Clock_Crossing_Bridge*.
- Connect the *clk_reset* port of *clk_0* to the *m0_reset* port of *Clock_Crossing_Bridge*.

Double-click on the base address of *Clock_Crossing_Bridge* and set it to 0x1400. Similarly, set the base address of *switches* to 0x0000 and *LEDs* to 0x0010. The Nios processor will access these components at the address:

bridge base address + component base address. For *switches* this will be address 0x1400 and for *LEDs* this will be 0x1410. The complete system is shown in Figure 15. Regenerate the system then recompile the top-level VHDL entity. Finally use the updated assembly program given in Figure 16 to test your system with the Intel FPGA Monitor Program.

Figure 15. The final Nios II system.

```
.equ
         Switches, 0x00001400
.equ
         LEDs, 0x00001410
         start
.global
start:
                   r2, Switches
         movia
                   r3, LEDs
         movia
loop:
         ldbio
                   r4, 0(r2)
         stbio
                   r4, 0(r3)
         br
                   loop
```

Figure 16. New Assembly language code to control the lights.

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.