
Using Terminals with
DE-Series Boards

For Quartus® Prime 18.1

1 Introduction

This tutorial provides an introduction to using terminals to communicate with programs compiled for Nios® II and
ARM* processors on the Intel® DE-series FPGA boards. The tutorial demonstrates how to write C and assembly
code for these processors to send and receive characters to and from a host PC. On the host PC side, the tutorial
describes how to use the Intel FPGA Monitor Program’s terminal window, as well as third-party terminal programs
such as Putty, to send and receive characters to and from the FPGA board.

The reader is expected to have a basic understanding of C and assembly languages, and to be familiar with the Intel
FPGA Monitor Program software.

Contents:

• Introduction to terminals

• Using the JTAG* UART terminal

• Using the RS232 UART terminal

• Using the USB UART terminal

• Using the ARM Semihosting terminal

Intel Corporation - FPGA University Program
March 2019

1

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

2 Background

A terminal is a program that receives and displays text data; it also allows a user to input text data for transmission to
other programs. Most programmers will be familiar with the Linux* console (a kind of terminal), where a program
can call the printf and scanf functions to display text to, and read text from, the terminal. In this case, the program
and the terminal both run on the same system, and the communication between the two is facilitated by the Linux
operating system.

Sometimes, it is necessary to use a terminal to communicate with a remote program - one that is running on a different
system than the terminal. For example, when developing a program for a Nios II or ARM processor running on an
Intel FPGA board, it is convenient to use a terminal on the host PC to communicate with the program running on
the board. Because the terminal and the remote program run on separate systems, some sort of communication link
between the two systems is required for data transmission. The DE-series FPGA boards provide a number of ways to
establish a communication link with the host PC: JTAG UART, RS232 UART, USB UART, and Semihosting. This
tutorial describes how to write remote program code for Nios II and ARM processors to send and receive characters
through these communication links. As well, it describes how to launch a terminal on the host PC to connect to these
links.

3 Using Terminals

This section describes the use of the JTAG UART, RS232 UART, USB UART, and Semihosting terminals. Because
each terminal type requires a particular communication link, some boards may not support certain terminals. For
example, the RS232 UART terminal uses a RS232 serial cable to transmit characters. Only the DE0 and DE2-115
boards contain RS232 ports and therefore support this terminal type. Table 1 provides a full list of the terminals
supported by each DE-series board.

Table 1. Supported Terminals by Board
JTAG UART RS232 UART USB UART Semihosting

DE0-CV Yes
DE0-Nano Yes

DE0-Nano-SoC Yes Yes ARM Only
DE1-SoC Yes Yes ARM Only
DE2-115 Yes Yes

DE10-Nano Yes Yes ARM Only
DE10-Standard Yes Yes ARM Only
DE10-Standard Yes Yes ARM Only

DE10-Lite Yes Yes ARM Only
DE10-Nano Yes Yes ARM Only

3.1 The JTAG UART Terminal

The JTAG UART is an IP core that facilitates serial UART communication between the system on the FPGA board
and the host PC, through a JTAG cable such as the Intel USB Blaster I/II. While this communication link can be used
to transmit any data, it is in practice commonly used to transmit character data. Figure 1 shows the arrangement

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

of the components used to facilitate this communication link. These components are described in the following
paragraphs.

On the FPGA board, a program running on the Nios II or ARM processor uses the JTAG UART core’s memory-
mapped register interface to send and receive character data to and from the PC. When the program writes characters
to the JTAG UART’s register interface, the JTAG UART sends these characters through the USB Blaster I/II cable
to the host PC. When the JTAG UART receives characters from the host PC via the USB Blaster I/II cable, it stores
these characters in a FIFO queue, which can be read by the program through the JTAG UART’s memory mapped
registers.

On the host PC, the Intel FPGA Monitor Program’s built-in Terminal window can be used to send and receive char-
acter data with the JTAG UART. To do this, the Intel FPGA Monitor Program must be configured to communicate
with the JTAG UART by selecting it in the Terminal device drop-down menu in the System Settings window. Now,
upon starting a debugging session with the FPGA board, the Monitor Program will poll the JTAG server for any
characters coming from the JTAG UART and display these characters in its Terminal window. As well, characters
inputted to the Terminal window by the user are sent through the JTAG server to the JTAG UART. The JTAG Server
is a program included with Quartus® Prime software that allows programs like the Intel FPGA Monitor Program to
send and receive data through a USB Blaster I/II cable.

Terminal Program

FPGA Board

USB Blaster I/II Cable

Host PC

JTAG Server

Nios II/ARM Processor

JTAG UART IP Core

Figure 1. A JTAG UART communication link between the host PC and the FPGA board.

3.1.1 Using the JTAG UART Register Interface

The JTAG UART includes a transmit (TX) FIFO queue that stores data waiting to be transmitted to the host computer.
The size of this FIFO queue is 64 characters by default, and can be configured when the core is instantiated in
Platform Designer. Character data is loaded into this FIFO queue by performing a write to bits 7−0 of the Data
register in Figure 2. Note that writing into this register has no effect on received data. The amount of space,
WSPACE, currently available in the TX FIFO queue is provided in bits 31−16 of the Control register. If the TX
FIFO queue is full, then any characters written to the Data register will be lost.

When character data from the host computer is received by the JTAG UART it is stored in a receive (RX) FIFO
queue. The size of this FIFO queue is 64 characters by default, and can be configured when the core is instantiated
in Platform Designer. The number of characters currently stored in this FIFO queue is indicated in the field RAVAIL,
which are bits 31−16 of the Data register. If the RX FIFO queue overflows, then additional data is lost. When data
is present in the RX FIFO queue, then the value of RAVAIL will be greater than 0 and the value of bit 15, RVALID,
will be 1. Reading the character at the head of the FIFO queue, which is provided in bits 7−0, decrements the value

Intel Corporation - FPGA University Program
March 2019

3

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

Offset 0731 16. . .

0x0 

0x4 

DATARAVAIL

14 8. . . . . .

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 2. JTAG UART registers.

of RAVAIL by one and returns this decremented value as part of the read operation. If no data is present in the RX
FIFO queue, then RVALID will be set to 0 and the data in bits 7−0 is invalid.

Bit 10 in the Control register, called AC, has the value 1 if the JTAG UART has been accessed by the host computer.
This bit can be used to check if a working connection to the host computer has been established. The AC bit can be
cleared to 0 by writing a 1 into it.

The WE and RE bits of the Control register can be set to 1 to enable write and read interrupts, respectively. The WI
and RI bits have the value 1 if a write or read interrupt is pending, respectively. This tutorial does not describe the
use of interrupts with the JTAG UART IP Core.

3.1.2 Using the JTAG* UART with C Code

Figure 3 shows two C functions for reading and writing the JTAG UART, respectively. The get_char function
attempts to read a previously unread character from the JTAG UART, and returns that character if successful. If a
previously unread character is not available in the RX FIFO queue a null character ‘\0’ is returned instead.

The put_char function attempts to write a character to the JTAG UART. It succeeds if there is space available in the
TX FIFO queue of the JTAG UART which it determines by reading bits 31−16 of the Control register. If there is no
space, the function does not write the character to the JTAG UART.

An example C program that demonstrates the use of the JTAG UART is made available as part of the Intel FPGA
Monitor Program. The example can be found under the heading sample programs, and is identified by the name
JTAG UART.

3.1.3 Using the JTAG* UART with Nios® II Assembly Code

Figure 4 shows two Nios II assembly-language subroutines for reading and writing the JTAG UART. The GET_CHAR
subroutine reads a character from the JTAG UART, and returns that character in register r2. If the JTAG UART’s RX
FIFO queue is empty, it returns the null character ‘\0’.

The PUT_CHAR subroutine attempts to write a character to the JTAG UART. It succeeds if there is space available
in the TX FIFO queue of the JTAG UART which it determines by reading bits 31−16 of the Control register. If there
is no space, the subroutine skips the stwio instruction, thus not writing the character to the JTAG UART.

4 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

/********************************************************************************
* Subroutine to read a character from the JTAG UART

* Returns \0 if no character, otherwise returns the character

********************************************************************************/
char get_char(void) {

volatile int * JTAG_UART_ptr = (int *)0xFF201000; // JTAG UART address
int data;
data = *(JTAG_UART_ptr); // read the JTAG_UART data register
if (data & 0x00008000) // check RVALID to see if there is new data

return ((char)data & 0xFF);
else

return (’\0’);
}
/********************************************************************************
* Subroutine to send a character to the JTAG UART

********************************************************************************/
void put_char(char c) {

volatile int * JTAG_UART_ptr = (int *)0xFF201000; // JTAG UART address
int control;
control = *(JTAG_UART_ptr + 1); // read the JTAG_UART control register
if (control & 0xFFFF0000) // if space, write character, else ignore

*(JTAG_UART_ptr) = c;
}

Figure 3. C-language functions that use the JTAG UART.

An example Nios II assembly-language program that demonstrates the use of the JTAG UART is made available as
part of the Intel FPGA Monitor Program. The example can be found under the heading sample programs, and is
identified by the name JTAG UART.

Intel Corporation - FPGA University Program
March 2019

5

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

/********************************************************************************
* Subroutine to read a character from the JTAG UART

* r4 = JTAG UART base address

* Returns the character in r2. Returns \0 if no new character in RX FIFO.

********************************************************************************/
.global GET_CHAR

GET_CHAR:
/* save any modified registers */
subi sp, sp, 8 /* reserve space on the stack */
stw r5, 0(sp) /* save register */
ldwio r2, 0(r4) /* read the JTAG UART Data register */
andi r5, r2, 0x8000 /* check if there is new data */
bne r5, r0, RETURN_CHAR
mov r2, r0 /* if no new data, return \0 */

RETURN_CHAR:
andi r5, r2, 0x00ff /* the data is in the least significant byte */
mov r2, r5 /* set r2 with the return value */
/* restore registers */
ldw r5, 0(sp)
addi sp, sp, 8

ret

/********************************************************************************
* Subroutine to send a character to the JTAG UART.

* r4 = JTAG UART base address

* r5 = character to send

********************************************************************************/
.global PUT_CHAR

PUT_CHAR:
/* save any modified registers */
subi sp, sp, 4 /* reserve space on the stack */
stw r6, 0(sp) /* save register */

ldwio r6, 4(r4) /* read the JTAG UART Control register */
andhi r6, r6, 0xffff /* check for write space */
beq r6, r0, END_PUT /* if no space, ignore the character */
stwio r5, 0(r4) /* send the character */

END_PUT:
/* restore registers */
ldw r6, 0(sp)
addi sp, sp, 4

ret

Figure 4. Nios II assembly-language subroutines that use the JTAG UART.

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

3.1.4 Using the JTAG* UART with ARM Assembly Code

Figure 5 shows two ARM assembly-language subroutines for reading and writing the JTAG UART, respectively.
The GET_CHAR subroutine reads a character from the JTAG UART, and returns that character in register R0. If the
JTAG UART’s RX FIFO queue is empty, it returns the null character ‘\0’.

The PUT_CHAR subroutine attempts to write a character to the JTAG UART. It succeeds if there is space available
in the TX FIFO queue of the JTAG UART which it determines by reading bits 31−16 of the Control register. If there
is no space, the subroutine skips the STR instruction, thus not writing the character to the JTAG UART.

An example ARM assembly-language program that demonstrates the use of the JTAG UART is made available as
part of the Intel FPGA Monitor Program. The example can be found under the heading sample programs, and is
identified by the name JTAG UART.

/********************************************************************************
* Subroutine to get a character from the JTAG UART

* R1 = JTAG UART base address

* Returns the character read in R0

********************************************************************************/
.global GET_CHAR

GET_CHAR:
LDR R0, [R1] // read the JTAG UART data register
ANDS R2, R0, #0x8000 // check if there is new data
BNE RETURN_CHAR
MOV R0, #0 // if no data, return \0

RETURN_CHAR:
AND R0, R0, #0x00FF // return the character
BX LR

/********************************************************************************
* Subroutine to send a character to the JTAG UART

* R0 = character to send

* R1 = JTAG UART base address

********************************************************************************/
.global PUT_CHAR

PUT_CHAR:
LDR R2, [R1, #4] // read the JTAG UART control register
LDR R3, =0xFFFF0000
ANDS R2, R2, R3 // check for write space
BEQ END_PUT // if no space, ignore the character
STR R0, [R1] // send the character

END_PUT:
BX LR

Figure 5. ARM assembly-language subroutines that use the JTAG UART.

Intel Corporation - FPGA University Program
March 2019

7

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

3.2 The RS232 UART Terminal

The RS232 UART is an IP core that facilitates serial UART communication between the system on the FPGA board
and the host PC, through an RS232 cable. Figure 6 shows the arrangement of the components used to facilitate this
communication link. While this serial communication link can be used to transmit any arbitrary data, it is in practice
commonly used to transmit character data. On the FPGA board, a program running on the Nios II or ARM processor
can use the RS232 core’s memory-mapped register interface shown in Figure 7 to send and receive character data to
and from the host PC.

Terminal Program

FPGA Board

RS232 Cable

Host PC

COM/ttyS Port

Nios II/ARM Processor

RS232 UART IP Core

Figure 6. An RS232 UART communication link between the host PC and the FPGA board.

When the RS232 UART is connected to a host PC via an RS232 cable, the PC will recognize it as a serial commu-
nication device. On a Windows® PC, it will appear as a COM port (in Device Manager). On a Linux PC, it will
appear as a ttyS character device (in /dev/ ). There exist many terminal programs that can be used to communicate
with a serial communication device, and documentation for them can be found online. Section 3.2.5 of this tutorial
demonstrates the use of a popular and free terminal called Putty to communicate with the RS232 UART.

3.2.1 Using the RS232 UART Register Interface

Unused

Unused

Offset 0731 16. . .

0x0 

0x4 

DATARAVAIL

14 8. . . . . .

WSPACE Unused WI RI WE RE

1

RVALID

10 911

Unused

15

Data register

Control register

. . . 2324

Figure 7. RS232 UART registers.

The RS232 UART includes a transmit (TX) FIFO queue that stores data waiting to be transmitted to the host com-
puter. Character data is loaded into this FIFO queue by performing a write to bits 7−0 of the Data register in Figure
7. Note that writing into this register has no effect on received data. The amount of space, WSPACE, currently
available in the TX FIFO queue is provided in bits 23−16 of the Control register. If the TX FIFO queue is full, then
any characters written to the Data register will be lost.

When character data from the host computer is received by the RS232 UART it is stored in a receive (RX) FIFO
queue. The number of characters currently stored in this FIFO queue is indicated in the field RAVAIL, which are bits
23−16 of the Data register. If the RX FIFO queue overflows, then additional data is lost. When data is present in the

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

RX FIFO queue, then the value of RAVAIL will be greater than 0 and the value of bit 15, RVALID, will be 1. Reading
the character at the head of the FIFO queue, which is provided in bits 7−0, decrements the value of RAVAIL by one
and returns this decremented value as part of the read operation. If no data is present in the RX FIFO queue, then
RVALID will be set to 0 and the data in bits 7−0 is invalid.

The WE and RE bits of the Control register can be set to 1 to enable write and read interrupts, respectively. The WI
and RI bits have the value 1 if a write or read interrupt is pending, respectively. This tutorial does not describe the
use of interrupts with the RS232 UART IP Core.

3.2.2 Using the RS232 UART with C Code

Figure 8 shows two C functions for reading and writing the RS232 UART, respectively. The get_char function
attempts to read a previously unread character from the RS232 UART, and returns that character if successful. If a
previously unread character is not available in the RX FIFO queue a null character ‘\0’ is returned instead.

The put_char function attempts to write a character to the RS232 UART. It succeeds if there is space available in the
TX FIFO queue of the RS232 UART which it determines by reading bits 23−16 of the Control register. If there is
no space, the function does not write the character to the RS232 UART.

/********************************************************************************
* Subroutine to read a character from the RS232 UART

* Returns \0 if no character, otherwise returns the character

********************************************************************************/
char get_char(void) {

volatile int * RS232_UART_ptr = (int *)0xFF201000; // RS232 UART address
int data;
data = *(RS232_UART_ptr); // read the RS232_UART data register
if (data & 0x00008000) // check RVALID to see if there is new data

return ((char)data & 0xFF);
else

return (’\0’);
}
/********************************************************************************
* Subroutine to send a character to the RS232 UART

********************************************************************************/
void put_char(char c) {

volatile int * RS232_UART_ptr = (int *)0xFF201000; // RS232 UART address
int control;
control = *(RS232_UART_ptr + 1); // read the RS232_UART control register
if (control & 0x00FF0000) // if space, write character, else ignore

*(RS232_UART_ptr) = c;
}

Figure 8. C-language functions that use the RS232 UART.

Intel Corporation - FPGA University Program
March 2019

9

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

3.2.3 Using the RS232 UART with Nios® II Assembly Code

Figure 9 shows two Nios II assembly-language subroutines for reading and writing the RS232 UART, respectively.
The GET_CHAR subroutine reads a character from the RS232 UART, and returns that character in register r2. If the
RS232 UART’s RX FIFO queue is empty, it returns the null character ‘\0’.

The PUT_CHAR subroutine attempts to write a character to the RS232 UART. It succeeds if there is space available
in the TX FIFO queue of the RS232 UART which it determines by reading bits 23−16 of the Control register. If
there is no space, the subroutine skips the stwio instruction, thus not writing the character to the RS232 UART.

10 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

/********************************************************************************
* Subroutine to read a character from the RS232 UART

* r4 = RS232 UART base address

* Returns the character in r2. Returns \0 if no new character in RX FIFO queue.

********************************************************************************/
.global GET_CHAR

GET_CHAR:
/* save any modified registers */
subi sp, sp, 8 /* reserve space on the stack */
stw r5, 0(sp) /* save register */
ldwio r2, 0(r4) /* read the RS232 UART Data register */
andi r5, r2, 0x8000 /* check if there is new data */
bne r5, r0, RETURN_CHAR
mov r2, r0 /* if no new data, return \0 */

RETURN_CHAR:
andi r5, r2, 0x00ff /* the data is in the least significant byte */
mov r2, r5 /* set r2 with the return value */
/* restore registers */
ldw r5, 0(sp)
addi sp, sp, 8

ret

/********************************************************************************
* Subroutine to send a character to the RS232 UART.

* r4 = RS232 UART base address

* r5 = character to send

********************************************************************************/
.global PUT_CHAR

PUT_CHAR:
/* save any modified registers */
subi sp, sp, 4 /* reserve space on the stack */
stw r6, 0(sp) /* save register */

ldwio r6, 4(r4) /* read the RS232 UART Control register */
andhi r6, r6, 0x00ff /* check for write space */
beq r6, r0, END_PUT /* if no space, ignore the character */
stwio r5, 0(r4) /* send the character */

END_PUT:
/* restore registers */
ldw r6, 0(sp)
addi sp, sp, 4

ret

Figure 9. Nios II assembly-language subroutines that use the RS232 UART.

Intel Corporation - FPGA University Program
March 2019

11

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

3.2.4 Using the RS232 UART with ARM® Assembly Code

Figure 10 shows two ARM assembly code subroutines for reading and writing the RS232 UART, respectively. The
GET_CHAR subroutine reads a character from the RS232 UART, and returns that character in register R0. If the
RS232 UART’s RX FIFO queue is empty, it returns the null character ‘\0’.

The PUT_CHAR subroutine attempts to write a character to the RS232 UART. It succeeds if there is space available
in the TX FIFO queue of the RS232 UART which it determines by reading bits 23−16 of the Control register. If
there is no space, the subroutine skips the STR instruction, thus not writing the character to the RS232 UART.

/********************************************************************************
* Subroutine to get a character from the RS232 UART

* R1 = RS232 UART base address

* Returns the character read in R0

********************************************************************************/
.global GET_CHAR

GET_CHAR:
LDR R0, [R1] // read the RS232 UART data register
ANDS R2, R0, #0x8000 // check if there is new data
BNE RETURN_CHAR
MOV R0, #0 // if no data, return \0

RETURN_CHAR:
AND R0, R0, #0x00FF // return the character
BX LR

/********************************************************************************
* Subroutine to send a character to the RS232 UART

* R0 = character to send

* R1 = RS232 UART base address

********************************************************************************/
.global PUT_CHAR

PUT_CHAR:
LDR R2, [R1, #4] // read the RS232 UART control register
LDR R3, =0x00FF0000
ANDS R2, R2, R3 // check for write space
BEQ END_PUT // if no space, ignore the character
STR R0, [R1] // send the character

END_PUT:
BX LR

Figure 10. ARM assembly language subroutines that use the RS232 UART.

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

3.2.5 Connecting to the RS232 UART from the Host PC Using Putty

Putty is a popular free-to-use terminal program that can be used to communicate with serial character devices at-
tached to the PC. This section describes how to use Putty to connect to the RS232 UART on a Windows host PC.

On a Windows PC, serial communication devices such as the RS232 UART are recognized by the PC as COM ports.
As there can be multiple COM ports connected to the PC, each COM port is assigned a unique identifying number.
The number assigned to the RS232 UART can be determined by viewing the list of COM ports in Device Manager.
Figure 11 shows the Device Manager’s list of available COM ports on one particular PC. Here, there was only one
COM port (the RS232 UART) connected which had been assigned the number 5 (COM5). In the case where there
are many COM ports available, the number assigned to the RS232 UART can be determined by disconnecting and
reconnecting the cable to see which COM port disappears then reappears in the list.

Figure 11. Determining the COM number assigned to the RS232 UART in Device Manager.

Once the COM port corresponding to the RS232 UART is determined, Putty can be configured to connect to it.
Figure 12 shows the main window of Putty. In this window, the Serial connection type must be chosen, and the
COM port must be entered in the Serial line field, as shown in the figure.

Some additional details about the RS232 UART must be entered by selecting the Serial panel in the Category box
on the left side of the window. The Serial panel is shown in Figure 13. These settings must be configured to match
the settings that were chosen when instantiating the RS232 UART IP core. Figure 14 shows the parameters that are
set when instantiating the core in Platform Designer, including the Baud rate, Parity, Data bits, and Stop bits. The
Flow control option should be set to None as the RS232 UART IP core does not support any flow control protocol.

The Speed option refers to the baud rate of the the RS232 UART, which is the number of bits per second that the
RS232 UART will send, and is expecting to receive from the host PC. The Data bits option refers to how many bits
of data will be transmitted in each packet. Eight data bits are typically used for transmitting ASCII characters. The
Stop bits refer to how many bits follow the data bits to indicate that the packet is ending. The Parity option refers
to the error-checking scheme to use to determine if there is data corruption in incoming packets. The Flow control
option refers to the handshaking protocol by which either end of the connection can request to pause and resume
transmission of data.

Intel Corporation - FPGA University Program
March 2019

13

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 12. Putty’s main window.

Figure 13. Putty’s configuration window for serial communication settings.

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 14. RS232 UART settings in Platform Designer Wizard.

Once all of the serial line settings have been entered, the Open button can be pressed to start the terminal. Once
opened, a terminal will appear as shown in Figure 15. This terminal will now display text coming from the RS232
UART, and send any user inputs to the RS232 UART.

Figure 15. Putty terminal ready to communicate with RS232 UART.

Intel Corporation - FPGA University Program
March 2019

15

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

3.3 The USB UART Terminal

Serial UART communication to facilitate terminal communication in the past was commonly done using an RS232
cable. As modern computers have adopted the USB cable as the preferred connection medium, few computers now
have RS232 ports. As a result, USB-to-UART chips are often used to allow systems (such as a system on a DE-series
board) to perform serial UART communication over USB cable with a host PC. The DE1-SoC board contains the
FTDI FT232R USB-to-UART chip and is capable of this communication link. Figure 16 shows the arrangement of
the components that are used to facilitate this communication link.

On the FPGA board, the USB-to-UART chip exposes an RS232 interface, which comprises an RX (receive) pin, and
a TX (transmit) pin. The RS232 UART IP core can be instantiated to communicate through these pins. A program
running on a Nios II or ARM processor on the board can then use this IP core’s register interface, described in
section 3.2.1, to send and receive characters to the host PC. C code that uses this interface is shown in section 3.2.2.
Nios II assembly-language code that uses this interface is shown in section 3.2.3. ARM assembly-language code
that uses this interface is shown in section 3.2.4.

Terminal Program

FPGA Board

USB Cable

Host PC

COM/ttyS Port

FT232R Driver

Nios II/ARM Processor

RS232 UART IP Core

FT232R Chip

Figure 16. A USB UART communication link between the host PC and the FPGA board.

On the host PC side, the driver for the FTDI FT232R chip detects that the chip is connected via a USB cable,
and exposes it as a serial communication device. On a Windows PC, it will appear as a COM port (in Device
Manager). On a Linux PC, it will appear as a ttyS character device (in /dev/ ). A terminal program can connect to the
exposed COM/ttyS interface to send and receive characters with the system on the FPGA board. There exist many
terminal programs that can be used, and documentation for them can be found online. Section 3.2.5 of this tutorial
demonstrates the use of a popular and free terminal program called Putty.

3.4 The ARM Semihosting Terminal

When a debugger such as the Intel FPGA Monitor Program starts a debugging session with a processor, it establishes
a communication link to the processor. It is through this link that the debugger performs operations such as single-
stepping and setting breakpoints. Semihosting is a mechanism that leverages this connection to allow a program
running on an ARM processor to request services from the debugger. Among other possible services, a program
can request to read and write files. When a program writes characters to a special file named stdout, the Intel

16 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

FPGA Monitor Program displays those characters in its Semihosting terminal. When a user enters characters to the
Semihosting terminal, these characters are stored in a special file named stdin which can be read by the program.
Note that stdout and stdin are not actually files, and are not stored in persistent storage. They are temporary buffers
allocated inside the Intel FPGA Monitor Program, and are lost when the Intel FPGA Monitor Program closes.

To use the Semihosting Terminal in the Intel FPGA Monitor Program, users must select it under the Terminal device
drop-down menu in the System Settings window. Once selected, the Intel FPGA Monitor Program’s Terminal window
will function as a Semihosting terminal upon starting a debugging session with the ARM processor.

The following subsection describes how to write ARM programs in C to use the Semihosting interface to read and
write stdin and stdout. It is not recommended to use the Semihosting interface in assembly-language code. When
writing ARM assembly-language programs, the JTAG UART or RS232 UART should be used instead.

3.4.1 Using Semihosting with C Code

The ARM C compiler that is used in the Intel FPGA Monitor Program uses special C libraries that have been mod-
ified to use the Semihosting interface. Standard I/O functions such as printf, scanf, puts, and fprintf that are built
into these libraries will automatically use Semihosting services to perform their respective tasks. This provides a
Linux-like way to perform terminal communication, with no need to manually interface with the underlying com-
munication link. Figure 17 shows an example C program that uses these functions to print strings to the terminal
and accept input from the user.

/********************************************************************************
* C Program that asks the user for their name then prints it in three different

*ways.

********************************************************************************/
#include <stdio.h>
int main(void) {

char name[64];

// Get user’s name
printf("Hello, what is your name?\n");
scanf("%s", name);

printf("Your name is:\n");

// Print the user’s name in 3 different ways
printf("%s\n", name);
puts(name);
fprintf(stdout, "%s\n", name);

return 0;
}

Figure 17. ARM C code that uses the Semihosting terminal.

Intel Corporation - FPGA University Program
March 2019

17

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

4 Conclusion

This tutorial demonstrated the use of the different terminals available for communicating with programs running on
DE-series boards.

18 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING TERMINALS WITH DE-SERIES BOARDS For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program
March 2019

19

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Background
	3 Using Terminals
	3.1 The JTAG UART Terminal
	3.1.1 Using the JTAG UART Register Interface
	3.1.2 Using the JTAG* UART with C Code
	3.1.3 Using the JTAG* UART with Nios® II Assembly Code
	3.1.4 Using the JTAG* UART with ARM Assembly Code

	3.2 The RS232 UART Terminal
	3.2.1 Using the RS232 UART Register Interface
	3.2.2 Using the RS232 UART with C Code
	3.2.3 Using the RS232 UART with Nios® II Assembly Code
	3.2.4 Using the RS232 UART with ARM® Assembly Code
	3.2.5 Connecting to the RS232 UART from the Host PC Using Putty

	3.3 The USB UART Terminal
	3.4 The ARM Semihosting Terminal
	3.4.1 Using Semihosting with C Code


	4 Conclusion

