on DE4 Boards

(intel”) FPGA Using PCI Express

For Quartus® Prime 18.1

1 Introduction

This tutorial describes how to use the PCI Express (Peripheral Component Interconnect) on Intel DE4 board. It first
demonstrates how to build a system with the PCI Express IP Core using Platform Designer and then shows how to
use the PCI driver on Linux* operating system. The discussion is based on the assumption that the reader has the
basic knowledge of C language and Verilog hardware description language. Also the reader should be familiar with
Quartus® Prime software and Linux operating system.

Contents:

* Background

Building the PCI Express System
* Using the Driver

* Changing the Driver Codes

Intel Corporation - FPGA University Program 1
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

2 Background

PCI Express is a high-performance interconnect protocol for use in a variety of applications including network
adapters, storage area networks, embedded controllers, graphic accelerator boards, and audio-video products.

An example of a system using PCI Express on DE4 board is shown in Figure 1. The PCI Express IP Core implements
the PCI Express interface protocol to allows data transfer between a host computer and the on-chip memory on the
board. The data can be transferred either directly or through the DMA controllers. Besides, a Nios® II processor is
used to perform calculation on the data in the on-chip memory.

Altera DE4 Board

FPGA chip

Nios Il
processor

On-chip Memory

DMA controllers

PCI Express IP Core

PCI Express x8 Edge Connector

Figure 1. The block diagram for the system.

A simple application of this system is that the host computer can put data to the on-chip memory through a DMA
controller and wait for the Nios II processor to perform calculation on the data. Once the data is calculated, the host
computer can read the data back through the PCI Express IP Core.

Note that this tutorial shows the ways to use both DMA Controller and Scatter-Gather DMA Controller. In a real
design, two different kinds of DMA controllers are not necessary.

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

3 Building the PCI Express System

To use the PCI Express on the DE4 board, you have to instantiate the PCI Express IP Core in your hardware system.
To start with, create a new Quartus Prime project for your system. As shown in Figure 2, store your project in a
directory called de4_pcie_tutorial and assign the same name to both the project and its top-level design entity. In
your project, from the list of available devices, choose the appropriate device name for the FPGA used on the DE4
board. A list of devices names of DE4 boards can be found in Table 1.

(& New Project Wizard X

Directory, Name, Top-Level Entity

What is the working directory for this project?

|C:,FDeskt0p;de4_pcie_tutorial |

What is the name of this project?

|de4_pcie_tutorial |

What is the name of the top-level design entity for this project? This name is case sensitive and must exactly match the entity
name in the design file.

|de4_pcie_tutorial |

Use Existing Project Settings...

< Back Finish Cancel Help

Figure 2. Create a new project.

Table 1. DE4 FPGA device names

Board Device Name
DE4-230 | Stratix® IV GX EP4SGX230KF40C2
DE4-530 | Stratix® IV GX EP4SGX530KH40C2

Intel Corporation - FPGA University Program 3
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

3.1 Creating a Platform Designer System

In this section, we build a system with the PCI Express IP Core, DMA Controller, Scatter-Gather DMA Controller,
on-chip memory, and the Nios II processor in Platform Designer. Select Tools > Platform Designer to open the
Platform Designer as shown in Figure 3, and then save the file as gsys_system.gsys.

== Platform Designer - gsys_system.qgsys (C:\Desktop\ded_pcie_tutorial\gsys_system.qsys) - a x
File Edit System Generate View Tools Help
o o
Ipcatalog 2 - = I:_, System Contents 33| AddressMap &% | Interconnect Requirements 52 =
x| & System: gsys_system
4 X \’ ‘
Project * |Use Conn... Name Description Export Clock Base
W New Component... ! Bl ck_0 Clock Source
[F-5ystem x dk_in Clock Input iclk exported
Ll:hrarv 5=} dck_in_reset Reset Input reset
[#-Basic Functions . dk (Clock Output dk 0
05 = clk_reset Reset Output B
+-Interface Protocols A == =300
F-Low Power
--Memorv Interfaces and Controllers -
--Processors and Peripherals b 4
--sts Interconnect
---Tri-StaDe Components
[@-University Program
Mew... Edit... e Add...
t . Hier 2| DeviceF 2% - o
1w ck
[H-B= reset
-0k ck_0
< >
- £t W current filter:
§§ Messages . | .
Type Path Message
< >
0 Errors, 0 Warnings Generate HDL... | | Finish

Figure 3. Open the Platform Designer tool.
To add the PCI Express IP Core, perform the following:

* Select Interface Protocols > PCI Express > IP Compiler for PCI Express and click Add. The Configuration
Wizard window appears. You can use the scroll bar on the right to view parameters that are not initially visible.

* Under the System Settings heading, set the Test out width to None and leave others as default.

* Under the PCI Base Address Registers heading, set BARO as 64 bit Prefetchable Memory and BAR2 as 32
bit Non-Prefetchable.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

* Under the Device Identification Registers heading, set the Device ID to 0x00000de4.

* Under the Address Translation heading, set the Address translation table configuration to Dynamic trans-
lation table, Number of address pages to 2 and the Size of address pages to / GByte - 30 bits.

* Click Finish to add the PCI Express IP Core pcie_hard_ip_0 to the Platform Designer system. Figure 4 shows
screenshots of the settings.

% IP_Compiler for PCI Express - peie_hard_ip_0 x % IP_Compiler for PCI Express - peie_hard_ip_0 X
“ IP_Compiler for PCI Express “ IP_Compiler for PCI Express
Mogotors altera_pcie_hard_ip Documentation MagoCors® altera_pcie_hard_ip Documentation
[ex [ex "
[System Settings eI
mE Device Family: Stratix IV GX mE = = |
| = | Maximum payload size: 128 Bytes
[Gen2 lane rate mode RX buffer credit allocation - performance for received requests: |Maximum
e e s X4~ Posted header credit: 28
ca : ca
2| e 100 MHz P={| Posted data credit: 198
I [Juse 62.5MHz application dlack 5| Non-posted header credit: =
.@ Test out width: None .@ Completion header credit: a8
2 2 Completion data credit:
= [~ PCI Base Add (Type 0 G Space) W ompletion data credi 256
=
£ BAR. Type BAR. Size Avalon Base ... £ " Avalon-MM Settings
cl cl 3
= v p= | Peripheral mode: Requester/Completer «
ﬂ 1 - Ocoupied Not used o 000000000 ﬂ R T
2 32 bit Non-Prefetchab...0 (0x00000000 (WS =B 2
b 3 Not used o [0x00000000 | Control register access (CRA) Avalon slave port
Ll 4 Not used o 0x00000000 Cr
=1 5 Not used 0 l0%00000000 =1 [] Disable Auto Reordering for Rx Completion TLP's
ﬁ ﬁ [[] Auto-enable PCIe interrupt {enabled at power-on)
| peice e
Vendor ID: 0%00001172 [[] Enable Exparting User MSI Interface
i Device ID: 0x00000de4 i PCIe interrupt enable register bits: 0x0000FFFF
Revision ID: 0x00000001 [Address T
Class code: 0x00000000 L_{| Address translation table configuration: Dynamic translation table
Subsystem vendor ID: 0x00001172 Number of address pages: 3 .
Subsystem ID: 000000004 Size of address pages: 1 GByte - 30 bits ~
[LinkC [Address T Table G {only valid for fixed configuration)
Link port number: 1
Address Page PCle Address 63:32 PCle Address 31:0
Link Common Clock 0 n
i
[~ Error Reporting N/A
[] Implement advance error reporting MNfA
NA
[] Implement ECRC check
<> v < > /A hd v
< > | | < > |

Figure 4. Settings for PCI Express IP Core.

To add the DMA Controller, perform the following:

¢ Select Basic Functions > DMA > DMA Controller Intel FPGA IP and click Add.

e Under the DMA Parameters tab, check the checkbox Enable burst transfers and set the Maximum burst
size to 1024 words.

* Select the Advanced tab, and uncheck all the checkboxes except doubleword. This makes the DMA Con-

troller allow for doubleword (64 bits) transactions only.

Intel Corporation - FPGA University Program 5
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

* Click Finish, then the DMA Controller dma_0 is added to the Platform Designer system. Figure 5 shows the
screenshots of the settings.

== DMA Controller Intel FPGA IP - dma_0 X | @ DMA Controller Intel FPGA IP - dma_0 x
“ DMA Controller Intel FPGA IP “ DMA Controller Intel FPGA IP
Megators AItEra_avalon_dma Documentation Megaters altera_avalon_dma Documentation
4 4
1 =
0 DMA Parameters Advanced O DMA Parameters Advanced
[Transfer size [~ Allowed tr
Width of the DMA length register (1-32) (bits): | 13 [bvis
The maximum transaction size will be at least 8191.0 bytes. [halfword
The maximum may be automaticaly increased to encompass the slave span.
[] word
[~ Burst tr doubleword
Enable burst transfers W=
Maximum burst size (words): 1024
|~ Soft reset
Enable soft reset
|~ FIFO depth
Data transfer FIFO depth: 32
Set the depth to at least twice the maximum read latency of the slave interface connected to the rez
A depth that is too low reduces transfer throughput.
[~ FFoi
[] Construct FIFO from registers
Enable to construct FIFO from register, else default to using embedded memory blocks.
€|« > (e 2| < >
‘@ Info: dma_0: DMA Controller will only be supported in Quartus Prime Standard Edition in the future release.‘ |@ Info: dma_0: DMA Contraller will only be supported in Quartus Prime Standard Edition in the future release.|

Figure 5. Settings for DMA Controller.

To add the Scatter-Gather DMA Controller, perform the following:

¢ Select Basic Functions > DMA > Scatter-Gather DMA Controller Intel FPGA IP and click Add.

* In the Configuration Wizard window, check the checkbox of Enable burst transfers and set the Data width
to 32 as shown in Figure 6.

* Click Finish, then the Scatter-Gather DMA Controller sgdma_0 is added to the Platform Designer system.

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS

For Quartus® Prime 18.1

== Scatter-Gather DMA Controller Intel FPGA IP - sgdma_0 *
“ Scatter-Gather DMA Controller Intel
FPGA IP -
altera_avalon_sgdma Documentation
4 4
E’ [
D |' T £ 1
Transfer mode: Memory To Memory -
I [[] Enable bursting on descriptar read master
Allow unaligned transfers
™]
B th: 4
~ Write burstcount signal width: 4
Avalon MM data master byte reorder mode: | g Reordering +
|~ Data and error widths
Data width: G
Source error width: 0
Sink error width: [i}
[~ FIFO depth
Data transfer FIFO depth: 54
< 3
< > |

Figure 6. Settings for Scatter-Gather DMA Controller.

To add the on-chip memory, perform the following:

* Select Basic Functions > On Chip Memory > On-chip Memory(RAM or ROM) Intel FPGA IP and click

Add.

* In the Configuration Wizard window, check the checkbox of Dual-port access. This will enable the on-chip
memory to support two different clock signals.

* Set the Slafe S1 Data width to 64 bits and the Total Memory Size to 8 Kbytes (8192 bytes).

¢ Check the check box of Enable non-default initialization file and set the User created initialization file to
onchip_memory2_0.hex as shown in Figure 7.

* Click Finish, then the on-chip memory onchip_memory2_0 is added to the Platform Designer system.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS

For Quartus® Prime 18.1

4 On-Chip Memory (RAM or ROM) Intel FPGA IP - onchip_memory2_0

=

Mogaters”

=

On-Chip Memory (RAM or ROM) Intel FPGA IP

altera_avalon_onchip_memory2

x

4

»

~ Memory type
. [

Type: RAM (Writable)

Dual-port access
[Single clock operation
o Read During Write Mode: DONT_CARE
| Blocktype: AUTO o
P | [Size
o [[] Enable different width for Dual-port access
M| Slave 51Data width: 64 o
Total memory size: 8192 bytes
Minimize memory block usage (may impact fmax)
|' Read latency
Slave s1 Latency: 1 ae
Slave s2 Latency: 1 o

[* ROM/RAM Memory

ResetRequest: Enabled -

|~ ECC Parameter

Extend the data width to support ECC bits: | pigahbled

[~ Memory initi

Initialize memory content
Enable non-default initialization file

Type the filename (e.g: my_ram.hex) or select the hex file using the file browser button.

User created initialization file: onchip_mem3_0.hex|

[[] Enable Partial Reconfiguration Initialization Mode
[[] Enable In-System Memory Content Editor feature

Instance ID: MONE

User is required to provide memory initialization files for memory.
Memory will be initialized from onchip_mem2_0.hex

€ ¥

Cancel

Figure 7. Settings for On-chip Memory.

To add the Nios II processor, perform the following:

* Choose Nios Il/e, which is the simplest version of the processor.

¢ Select Processors and Peripherals > Embedded Processors > Nios II Processor and click Add.

* Click Finish to add the Nios II Processor nios2_gsys_0 to the Platform Designer system. There may be some
error messages at the bottom of the screen, because some parameters have not been specified yet. Ignore these
messages as we will provide the necessary data later.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

Note that the Platform Designer automatically chooses names for the components. The name are not necessarily
descriptive enough for the design, but they can be changed. To rename a component, right-click the component
name and select Rename. Change the names of your components to the names shown in Figure 8.

Use Connections Name: Description Exp... Clock Base End RQ
= ck_0 Clock Source
(=] dk_in Clock Input iclke
(=8 dk_in_reset Reset Input reset

dk Clock Output dk_0
dk_reset Reset Quiput

B pcie_ip 1P _Compiler for PCI Express
pdie_core_dk Clock Qutput pcie_ip_pcie...
pde_core_reset Reset Qutput
cal_blk_dk Clock Input ‘uRcon
txs Avalon Memory Mapped Slave poie_ip_pde...
refdk Conduit
test_in Conduit
pcie_rsin Conduit
docks_sim Conduit
reconfig_busy Conduit
pipe_ext (Conduit
powerdown ‘Conduit
bari_o Avalon Memory Mapped Master pcie_ip_pcie...
bar2 Avalon Memary Mapped Master pcie_ip_pde...
aa Avalon Memary Mapped Slave pcie_ip_pde...
aa_irg Interrupt Sender
rxm_irg Interrupt Receiver ncie_ip_pde... 180 0| TIRQ 1S
rx_n Conduit
tx_out Conduit
reconfig_togxb Conduit
reconfig_gxbdlk Clock Input unRcomn
recenfig_fromgxb_0 (Conduit
fixedck Clock Input uncon

B dma DM Controller
dk Clock Input
reset Reset Input. [clk]
control_port_slave Avalon Memory Mapped Slave [clk]
irg Interrupt Sender [clk]
read_master Avalon Memory Mapped Master [clk]
write_master Avalon Memary Mapped Master [clk]

E sgdma Scatter-Gather DMA Caontroller
dk Clock Input unRcomn
reset Reset Input [dk]
csr Avalon Memory Mapped Slave [clk]
descriptor_read Avalon Memary Mapped Master [clk]
descriptor_write Avalon Memary Mapped Master [clk]
csr_irg Interrupt Sender [clk]
m_read Avalon Memory Mapped Master [clk]
m_write Avalon Memory Mapped Master [clk]

B onchip_memory 'On-Chip Memory (RAM or ROM)
dk1 Clock Input
s1 Avalon Memary Mapped Slave [dk1]
resetl Reset Input [clk1]
52 Avalon Memory Mapped Slave [clk2]
dk2 Clock Input
reset2 Reset Input. [clkz]

E nios2 Mios II {Classic) Processar
dk Clock Input unRcomn
reset_n Reset Input [dk]
data_master Avalon Memory Mapped Master [clk]
instruction_master Avalon Memary Mapped Master [clk]
d_irq Interrupt Receiver [clk] Iag o IRQ 31
jtag_debug_module_reset |Reset Quiput [clk]
jtag_debug_module Avalon Memory Mapped Slave [clk] 0x0800 |OROEEE
custom_instruction_master (Custom Instruction Master

Figure 8. The Platform Designer system with renamed components.

After adding components, you have to connected them correctly. In Platform Designer, the Connections column
displays the potential connection points between components. A filled dot shows that a connection is made, while an
open dot shows a potential connection point. To complete the connections in the Platform Designer system, follow
these steps:

Intel Corporation - FPGA University Program 9
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

10

1. Connect the peie_ip barl_0 Avalon® MM master port to the onchip_memory s/ Avalon MM slave port using
the following procedures:

(a) Right-click the IP Compiler for PCI Express component pcie_ip, hover in the Connections and then
the pcie_ip.barl_0 to display possible connections.

(b) Select the onchip_memory.s1 on the list appeared.
2. Repeat step 1 to make the remaining connections listed in Table 2.

Table 2. Complete list of Platform Designer connections

Make Connection From: | To:

clk_50.clk pcie_ip.cal_blk_clk
clk_50.clk onchip_memory.clk2
clk_50.clk nios2.clk

clk_50.clk_reset
clk_50.clk_reset

onchip_memory.reset2

nios2.reset_n

pcie_ip.pcie_core_clk

onchip_memory.clkl

pcie_ip.pcie_core_clk

dma.clk

pcie_ip.pcie_core_clk

sgdma.clk

pcie_ip.pcie_core_reset

onchip_memory.resetl

pcie_ip.pcie_core_reset

dma .reset

pcie_ip.pcie_core_reset

sgdma.reset

pcie_ip.barl_0 (step 2)
pcie_ip.bar2

onchip_memory.sl

dma.control_port_slave

pcie_ip.bar2 pcie_ip.cra

pcie_ip.bar2 sgdma.csr

dma.read_master onchip_memory.sl

dma.read_master pcie_ip.txs
dma.write_master onchip_memory.sl
dma.write_master pcie_ip.txs
sgdma.descriptor_read pcie_ip.txs
sgdma.descriptor_write pcie_ip.txs

sgdma.m_read onchip_memory.sl

sgdma.m_read pcie_ip.txs

onchip_memory.sl
pcie_ip.txs
onchip_memory.s2

sgdma.m_write

sgdma.m_write

nios2.data_master

nios2.instruction_master onchip_memory.s2

3. In the IRQ panel, click the connection from the Interrupt Sender of the dma component to the Interrupt Re-
ceiver pcie_ip component and type 1 into the box. Because the Platform Designer-generated IP Compiler for
PCI Express implements an individual interrupt scheme, you must specify the bit to which interrupt connects.
In this case, the DMA Controller’s interrupt sender signal connects to bit 1 of the IP Compiler for PCI Express
input interrupt bus.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS

For Quamm@ Prime 18.1

4. In the IRQ panel, connect the Interrupt Sender of the sgdma component to the Interrupt Receiver pcie_ip
component and type 2.

Besides connections inside the Platform Designer system, there are signals that have to be exported to make connec-

tions outside the system. To export signals, follow the steps:

1. In the row of the signal you want to export, click the Export column.

2. Accept the default name that appears in the Export column by clicking outside the cell without modifying the

text.

Export the pcie_ip interfaces listed in Table 3. After the signals are connected or exported, your Platform Designer

system should appear as indicated in Figure 9.

Table 3. List of the exported interfaces

Interface Name

Exported Name

refclk pcie_ip_refclk

test_in pcie_ip_test_in
pcie_rstn pcie_ip_pcie_rstn
clocks_sim pcie_ip_clocks_sim
reconfig_busy pcie_ip_reconfig_busy
pipe_ext pcie_ip_pipe_ext

rx_in pcie_ip_rx_in

tx_out pcie_ip_tx_out
reconfig_togxb pcie_ip_reconfig_togxb
reconfig_gxbclk pcie_ip_reconfig_gxbclk

reconfig_fromgxb_0

pcie_ip_reconfig_fromgxb_0

fixedclk

pcie_ip_fixedclk

Intel Corporation - FPGA University Program

March 2019

11

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

Use Connections Name Description Exp... Clock Base End RQ
= ck_0 Clock Source
C— dk_in Clock Input dk exported
C— ck_in_reset Reset Input reset
dk Clock Output dk_0
ck_reset Reset Qutput
B peie_ip IP_Compiler for PCI Express
pie_core_dk Clock Output pcie_ip_pdie...
pde_core_reset Reset Cutput
cal_blk_dk Clock Input dk_0
s Avalon Memary Mapped Slave pcie_ip_pdie... 00 OxTEE. ..
St refdk Conduit pcie...
< test_in Conduit poie...
O pae_rstn Conduit pCie...
St clocks_sim Conduit pcie...
St reconfig_busy Conduit pcie...
< pipe_ext Conduit poie...
powerdown Conduit
bari 0 Avalon Memary Mapped Master pcie_ip_pdie...
bar2 Avalon Memory Mapped Master pcie_ip_pdie...
oa Avalon Memory Mapped Slave pdie_ip_pde... 0x0 Ox3EEE
cra_irg Interrupt Sender
rxm_irgq Interrupt Receiver pde_ip_pdie... IRQ O IRD 15—
St r_in Conduit pcie...
< t_out Conduit poie...
O reconfig_togxb Conduit pCie...
C— reconfig_gxbdk Clock Input pcie... |exported
St reconfig_fromgxb_0 Conduit pcie...
C— fixeddk Clock Input pcie... |exported
E dma DMA Controller
dk Clock Input pcie_ip_pci...
reset Reset Input [clk]
control_port_slave Avalon Memory Mapped Slave [clk] 0x0 0x1f
irg Interrupt Sender [clk] >—[1]
read_master Avalon Memory Mapped Master [clk]
write_master Avalon Memory Mapped Master [clk]
B sgdma Scatter-Gather DMA Controller
dk Clock Input pcie_ip_pci...
reset Reset Input [clk]
csr Avalon Memory Mapped Slave [clk] 00 0x3£
descriptor_read Avalon Memory Mapped Master [clk]
descriptor_write Avalon Memory Mapped Master [clk]
csr_irg Interrupt Sender [clk] >—E|
— m_read Avalon Memory Mapped Master [cdk]
—————— m_write Avalon Memory Mapped Master [ck]
= enchip_memory On-Chip Memary (RAM or ROM)
ki Clock Input pcie_ip_pci...
s1 Avalon Memory Mapped Slave [ck1] 00 Ox1£EE
resetl Reset Input [clk1]
52 Avalon Memory Mapped Slave [clk2] 0x0000 |0x1££E
ck2 Clock Input dk_o
reset? Reset Input [dk2]
B nios2 Mios IT {Classic) Processor
dk Clock Input dk_0
reset_n Reset Input [clk]
— data_master Avalon Memory Mapped Master [cdk]
————— instruction_master Avalon Memory Mapped Master [ck]
d_irg Interrupt Receiver [clk] IRG O IRC 31
jtag_debug_module_reset |Reset Output [clk]
jtag_debug_medule Avalon Memory Mapped Slave [clk] 0:x0B00 [0x0£EE
custom_instruction_master |Custom Instruction Master

Figure 9. The Platform Designer system with connections.

Before you can generate the Platform Designer system, You notice that there are still some errors in the message box.
Platform Designer requires that you resolve the base addresses of all Avalon MM slave interfaces in the Platform
Designer system. You can either use the auto-assign feature, or specify the base addresses manually. To use the
auto-assign feature, on the System menu, click Assign Base Addresses. Figure 10 shows the desired Address Map

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS

For Quartus® Prime 18.1

tab of the Platform Designer system after you have auto-assigned the base address. Make any changes needed to
ensure that all addresses match those in Figure 10 before continuing.

pcie_ip.bar1_0

pcie_ip.bar2

dma.read_master

dma. write_master

sgdma.descriptor_read

pde_ip.ts 0xB000_0000 - Ox£fff £fFFf|0xB000_0000 - OxfEfff fEFF|0xBO00_0000 — Oxffff FEFF
pde_ip.cra 0x0000_0000 - 0x0000_3££f|
dma.control_port_slave 0x0000_4000 - 0x0000_401f|
sgdma.csr 0x0000_4040 - 0x0000_407%|

nchip_memory2.s1

0x0000_0000 - 0x0000_1£ff|

0x0000_0000 - 0x0000 1£ff

0x0000_0000 - 0x0000_1f£f

nchip_memory2.52

nios2.jtag_debug_module

pde_ip.txs

sgdma.descriptor_write
0x8000_0000 - Oxf£fff_FEFE|0xB000_0000 — OxfEFf £EEE

sgdma.m_read

sgdma.m_write

0xB000_0000 - OxffEEf £EFF

nios2.data_master

nios2.instruction_master

pde_ip.cra

dma.control_port_slave

sgdma. csr

nchip_memory2.s1

0x0000_0000 — 0x0000_1££F

0x0000_0000 - 0x0000_1££Ff

nchip_memory2.s2

0x0000 - OX1£EE

0x0000 - OX1££f

nios2.jtag_debug_module

0xZ800 - Ox2fEfF

Figure 10. The Platform Designer Address Map.

0xZ800 - Ox2fff

Also, you have to define the behaviour of the Nios II processor. Double-click on the nios2 component and then select
onchip_memory.s2 to be the memory device for both reset vector and exception vector, as shown in Figure 11. The
reset vector is the location in the memory device the processor fetches the next instruction when it is reset. Similarly,
the exception vector is the memory address the processor goes to when an interrupt is raised.

% Nios Il Processor - nios2 X
“ Nios II Processor
Megatorss 3ItEra_nios2_gen2
£ -
n Main Vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPU Settings JTAG Debug Adva
|~ Reset vector
Reset vector memory: onchip_memary.s2 (v
Reset vector offset: 0x00000000
Reset vector: 0x00000000
= ion Vector
Exception vector memory: onchip_memory.s2 ~
Exception vector offset: 000000020
Exception vector: 0x00000020
|~ Fast TLB Miss Vector
Fast TLB Miss Exception vector memory: | jjone
Fast TLB Miss Exception wector offset: pyoponoooo
Fast TLB Miss Exception vector: 000000000
v
<3| < >

Figure 11. The Settings for Nios II processor.

Now, the error messages should disappear and your Platform Designer system is finished. To generate the system,

perform the following:

Intel Corporation - FPGA University Program

March 2019

13

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

1. Select Generate > Generate HDL, uncheck the Create block symbol file (.bsf) in the Synthesis section as
shown in Figure 12.

2. Click the Generate button at the bottom of the tab.
3. After Platform Designer reports Generate Completed in the Generate progress box title, click Close.

4. On the File menu, click Save and then close the Platform Designer application.

s= Generation X

[~ Synthesis |

Synthesis files are used to compile the system in a Quartus project.

Create HOL design files for synthesis: | yerilog
[[] Create timing and resource estimates for third-party EDA synthesis tools.
[] Create block symbal file (.bsf)

|~ Simulation

The simulation model contains generated HOL files for the simulator, and may indude simulation-only features.
Simulation scripts for this component will be generated in a vendor-spedific sub-directory in the spedified output directory.

Follow the guidance in the generated simulation scripts about how to structure your design's simulation scripts and how to use the jp-sefup-simulE tion and
[p-make-simscripf command-ine utiities to compile all of the files needed for simulating all of the IP in your design.

Create simulation model: MNone

[~ output Directory
Path: C:/Desktop/de4_pde_tutorialfgsys_system

Figure 12. The Platform Designer Generation tab.

3.2 Adding PLL Using IP Catalog

Besides the Platform Designer system, you need to add a Phase-locked loop (PLL) block, which is not added as a
Platform Designer component. The PLL block is used to provide different clock signals for the Platform Designer
system. To add the PLL block, perform the following:

1. Select Tools > IP Catalog.

2. In the pop-up panel, select Library > Basic Functions > Clocks; PLLs and Resets > PLL > ALTPLL and
click Add... button.

3. Choose the Verilog as the output file type for your design, and specify a variation name for output files. For
this walkthrough, specify my_pll.v as the name of the IP core file: <working_dir>/my_pll.v, as shown in
Figure 13, and click OK.

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

(¥ save IP variation *

IP variation file name:

|C:,FDesktop,n’dezt_pcie_tutorial,n’my_pll.\.' |

Cancel
IP variation file type

O wHDL

® Verilog

Figure 13. The IP Core Plug In Manager.

4. Under the Parameter Settings tab, set What is the frequency of the inclk0 input to S0MHz as shown in

Figure 14 and click Next to go to the Inputs/Lock section.

“ MegaWizard Plug-In Manager [page 1 of 17]
Zp ALTPLL

Parameter

Settings

General/Modes Inputs/Lock Bandwidth/55 Clock switchover

Currently selected device family: | seratie v
Match project/defautt

my_pll

inclko Able to implement in Left_Right or Top_Bottom PLL

inclk0 frequency: 50.000 MHz

reset Operation M mal General

Which device speed grade wil you be using? Any -

Use military temperature range devices only

What is the frequency of the inck0 input? MHz -
Set up PLL in LVDS mode Data rate: | Mot Availzble Mbps

PLL Type

Which PLL type wil you be using?

O Left_Right PLL O Top_Bottom PLL ® Select the PLL type automatically

Operation Mode
How will the PLL outputs be generated?

® Use the feedback path inside the PLL
® In normal mode
On source-synchronous compensation Mode
O In zero delay buffer mode
Connect the fbmimic port (bidirectional)
(O With no compensation
O Create an 'fbin’ input for an external feedback (External Feedback Mode)
Which output clock will be compensated for? -

| Cancel || < Back || MNext = || Finish |

Figure 14. Settings for General/Mode section.

5. Uncheck the checkboxes of Create an ‘areset’ input to asynchronously reset the PLL and Create ‘locked’

output as shown in Figure 15.

Intel Corporation - FPGA University Program
March 2019

15

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

“ MegaWizard Plug-In Manager [page 2 of 17]

"2 ALTPLL

Parameter

Setfings

General/Modes Inputs/Lock Bandwidth/SS Clock switchover

Able to implement in Left_Right or Top_Bottom PLL

my_pll

Optional Inputs
Create an 'pllena’ input to selectively enable the PLL

incik0 frequency: 50.000 MHz

[] Create an 'areset’ input to asynchronously reset the PLL
[create an 'pfdena’ input to selectively enable the phase/frequency detector

Lock Output
[create "locked' output
[Enable self-reset on loss lock

Advanced Parameters
Using these parameters is recommended for advanced users only

[Create output file(s) using the 'Advanced' PLL parameters
- Configurations with output clock(s) that use cascade counters are not supported

- Note: PLL type setting must be explicitly set to 'Top_Bottom' or 'Left_Right' PLL

| Cancel || < Back || MNext = || Finish |

Figure 15. Settings for Input/Lock section.

6. Under the Output Clocks tab, enter SOMHz after selecting Enter output clock frequency as shown in Fig-
ure 16, and click Next to go to the clk_c1 section.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

“ MegaWizard Plug-In Manager [page 6 of 17]

"2 ALTPLL

E Cutput
Clocks

ck c3 ck c4 ckes > ckee > ckcr

c0 - Core/External Output Clock

my_pli Able to implement in Left_Right or Top_Bottom PLL
Use this clock
) Clock Tap Settings)
nclko inclkD frequency: 50.000 MHz Requested Settings Actual Settings
© m @® Enter output dock frequency: 50L00000000 |[MHz 50.000000
(O Enter output clock parameters:
S 1
Clock multiplication factor d
. | == Co
Clock division factor 1 s Py
Clock duty cycle (%) seo0 |2 50.00
Description Va
Note: The displayed internal settings of | PTimary dock VCO frequency (MHz) 70
the PLL is recommended for use by Modulus for M counter 14 »
advanced users only = =

Per Clock Feasibility Indicators

Use these clock settings for the DPA clock c0
(For the Left-Right PLL type only)

| Cancel || < Back || MNext = || Finish |

Figure 16. Settings for output c0.

7. Select the checkbox of Use this clock and then set the output clock frequency to 125MHz with the same
procedures of the last step, and click Next to go to the clk_c2 section.

8. Select the checkbox of Use this clock and then set the output clock frequency to 100MHz with the same
procedures of the last step.

9. Under the Summary tab, uncheck my_pll_bb.v as shown in Figure 17, and then click Finish to generate the
file.

Intel Corporation - FPGA University Program 17

March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

“ MegaWizard Plug-In Manager [page 17 of 17]

"2 ALTPLL

IE‘ Summary

Turn on the files you wish to generate. A gray checkmark indicates a file that is automatically
generated, and a green checkmark indicates an optional file. Click Finish to generate the selected
files. The state of each checkbox is maintained in subsequent MegaWizard Plug-In Manager
SEsSi0ns.

my_pll

The MegaWizard Plug-In Manager creates the selected files in the following directory:
C:\Desktop\de4_pcie_tutorily

incik0 frequency: 50.000 MHz

File Description
my_pll.v Variation file
my_pll.ppf PinPlanner ports PPF file
O my_pllinc AHDL Include file
O my_pl.cmp VHDL component declaration file
I my_pll.bsf Quartus Prime symbol file
O my_pll_inst.v Instantiation template file
O my_pl_bb.v Verilog HDL black-box file

Figure 17. Settings for Summary tab.

3.3 Integrating modules into the Quartus® Prime Project
To complete your hardware design, perform the following:
1. Type the code in Figure 18 into a file called de4_pcie_tutorial.v. This code is a top-level Verilog module

that instantiates the Platform Designer system and the PLL block. The module is named de4_pcie_tutorial,
because this is the name we specified in Figure 2 for the top-level design entity in the Quartus Prime project.

18 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

module ded4_pcie_tutorial (
input OSC_50_BANK2Z,
input PCIE_PREST_n,
input PCIE_REFCLK_p,
input [3:0] PCIE_RX_ p,
output [3:0] PCIE_TX_ p,
output [7:0] LED

)

assign LED[7] = 1'bl;
assign LED[3] = 1’bl;
wire clk50, clk125, clk100;
my_pll pll_inst(
.inclk0 (OSC_50_BANK2),
.c0 (clk50),
.cl (clkl1l25),
.c2 (clk1l00)

gsys_system system_inst (
.clk_clk (clk50),
.pcie_ip_refclk_export (PCIE_REFCLK_p),
.pcie_ip_fixedclk_clk (clkl25),
.reset_reset_n (1’bl),
.pcie_ip_pcie_rstn_export (PCIE_PREST
.pcie_ip_rx_in_rx_datain_0 (PCIE_RX_p
.pcie_ip_rx_in_rx_datain_1 (PCIE_RX_ p
.pcie_ip_rx_in_rx_datain_2 (PCIE_RX_ p
.pcie_ip_rx_in_rx_datain_3 (PCIE_RX p
.pcie_ip_tx_out_tx_dataout_0 (PCIE_TX_ p
.pcie_ip_tx_out_tx_dataout_1 (PCIE_TX_p
.pcie_ip_tx_out_tx_dataout_2 (PCIE_TX_p
.pcie_ip_tx_out_tx_dataout_3 (PCIE_TX_ p

— ===
w NPk oD

)i
endmodule

Figure 18. Verilog code for the top-level module

2. Add the de4_pcie_tutorial.v file, the gsys_system.qip file, the my_pll.qip file, and the onchip_memory2_0.hex
file to your Quartus Prime project as shown in Figure 19. The onchip_memory2_0.hex file is used to initialize
the on-chip memory and can be found in the directory design_files, which can be downloaded along with
this tutorial from the Intel FPGA University Program website. It contains the executable file of the demo
application for the Nios II processor, which will be used in the next section.

3. Add the necessary pin assignments on the DE4 board to your project. Note that an easy way of making the pin
assignments when you use the same pin names as in the DE4 User Manual is to import the assignments from
file. The pin assignments can be found in the DE4_230_pin_assignments.qsfor the DE4_530_pin_assignments.qsf
file (depending on your board), in the directory design_files.

Intel Corporation - FPGA University Program 19
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

—" Settings - de4_pcie_tutorial -] x

Category:

General

Files Select the design files you want to include in the project. Click Add All to add all design files in the project
Libraries directory to the project.

¥ IP Settings

IP Catalog Search Locations File name: | | . Add

Design Templates v
gn Temp * %|[aganu

¥ Operating Settings and Condition
Voltage File Name Type Library Design Entry/S Remove
Temperature onchip_memory2_0.hex Hexadecimal (Intel-... <None>
“ Compilation Process Settings gsys_system/synthesis/gsys_system.gip IP Variation File (.qip) <hone>
Incremental Compilation my_pllgip IP Variation File (.gip) <MNone= Down

~ EDATool Settings ded_pcie_tutorial.v Verilog HDL File <hones>

up

Design Entry/Synthesis Properties

Simulation
Board-Level
~ Compiler Settings
VHDL Input
Verilog HDL Input
Default Parameters
Timing Analyzer
Assembler
Design Assistant
Signal Tap Logic Analyzer
Logic Analyzer Interface
Power Analyzer Settings
SSN Analyzer

< > oK Cancel Apply Help

Figure 19. Files settings for the Quartus Project

4. Compile the Quartus Prime project.

3.4 Programming and Configuration

Before you can configure the DE4 board, you should plug the DE4 board into the PCI Express port of your Linux
computer and connect the board to the computer by means of a USB cable plugged into the USB-Blaster port. Then
turn on the power of the board and program the FPGA in the JTAG* programming mode as follows:

1. Select Tools > Programmer to reach the window in Figure 20.

2. If the USB-Blaster is not chosen by default, press the Hardware Setup... button and select the USB Blaster
in the window that pops up.

20 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

53 Programmer - C:/Desktop/ded_pcie_tutorial/ded_pcie_tutorial - ded_pcie_tutorial - [ded_pcie_tutorial.cdf] — O *

File Edit View Processing Tools Window Help

;HardwareSetup... USB-Blaster [USB-0] Mode: JTAG o Progress: :}

[Enable real-time ISP to allow background programming when available

File Device Checksum Usercode Program/ Verify Blank-
Configure Check

wh Start

%STDP output_files/ded_pcie_tutorial.sof EP4SGX230KF40 07941C45 07941C45

w Auto Detect
Delete

Y Add File...

i Change File..

3 save File

* Add Device..
TDI

' yp

EP45GX230KF40

' pown
TDO

F'

Figure 20. The Programmer window.

3. The configuration file de4_pcie_tutorial.sof should be listed in the window. If the file is not already listed,
then click Add File and select it from the output_files subdirectory of the project.

4. At this point the window settings should appear as indicated in Figure 20. Press Start to configure the FPGA.

After you have successfully configured the hardware in the FPGA device, you should reboot your Linux computer
to let the operating system to detect the PCI Express device you built. Ensure that the DE4 board is powered.

After the reboot, type command [spci in the terminal to ask the operating system to list all the PCI devices on the
computer. You should be able to see an Intel Oxde4 device shown on the terminal.

4 Using the Driver

In the previous section, you have built a hardware system that supports the PCI Express; however, you need a driver
to use the PCI Express to communicate with the DE4 board. Intel FPGA University Program provides an open
source PCI driver for the usage of DE4 board in Linux operating system. The driver is designed to meet the general
needs of using the PCI Express. It allows a user to:

Intel Corporation - FPGA University Program 21
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

. create a configuration file to define the hardware specific information for the driver.
. access any Base Address Registers (BAR).
. use DMA Controller and Scatter-Gather DMA Controller.

. use either polling or interrupt for DMA transfers.

The driver is in the directory design_files/driver. The driver is tested on Linux 2.6.32, but it should work with newer
versions of the Linux kernel.

4.1

Creating the Configuration File

Before you can use the driver, you need to create a file to configure the driver for your hardware system. An example
configuration file, config_file_example, can be found in the driver folder. To make the file for the system you built,
open config_file_example and perform the following:

22

. Set the Vendor ID and Device ID. They should be the same with the IDs shown in Figure 4.

vendor_id = 0x1172
device_id = 0x0de4

. Set the parameters related to the PCI Express IP Core.

pci_dma_bit_range = 31 This defines the bit mask for DMA buffers. By setting it to 31, you force Linux
to allocate physical address between 0x00000000 — Ox7FFFFFFF for DMA buffers. This parameter is
decided by the settings of Address Translation in the IP Compiler for PCI Express.

tx_base_addr = 0x80000000 The base address of the zxs Avalon MM slave.
pcie_cra_bar_no =2 This defines the number of the BAR which is connected to the cra Avalon MM slave.
pcie_cra_base_addr = 0x00000000 The base address of cra Avalon MM slave.

. Set the parameters for DMA controllers. By default, the driver supports at most four DMA controllers, so

there are four columns in the config_file_example. You only need to fill in the first two columns for the DMA
Controller and the Scatter-Gather DMA Controller in your system, and leave other columns as zeros.

dma_type =1, 2 This defines the type of the DMA controller. The DMA Controller is represented by 1, while
the Scatter-Gather DMA Controller is represented by 2.
dma_irq_no =1, 2 This defines the interrupt number of DMA controller as shown Figure 9.

dma_ctrl_bar_no = 2,2 This defines the number of the BAR, which is connected to the control port of the
DMA controller.

dma_ctrl_base_addr = 0x00004000, 0x00004040 This defines the base address of the control port.

. Set the data width of the allowed transactions for DMA Controller. This is necessary if you are using the DMA

Controller.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

sdma_data_width = 8, 0 Set the first number to 8 (words) to match the settings in Figure 5 and ignore it for
the Scatter-Gather DMA Controller.

5. Save the file as tutorial_config_file.

4.2 Load the Driver Module into the Kernel

To install the driver, you need to load the .ko module file into the Linux kernel. If it’s your first time to use the driver,
you have to compile the driver codes into the .ko module file. Run the makefile in the folder driver to compile the
driver. Note that you may have to change the file format from the Windows* Format to the UNIX* Format first, so
go to the demo and driver folders before compiling any programs, type:

dos2unix =*

After you compiled the driver, you will get the kernel module file alt_up_pci.ko. The name of the module file is
determined by the makefile and you are recommended not to change the name. Once you have the .ko module file,
you don’t have to recompile the driver for your future usage of the driver.

Each time you use the driver, you will have to dynamically load the driver module with the correct configuration file.
This is done by a shell script load_alt_up_pci_driver.sh provided in the driver folder. Load the driver module with
the configuration file you created by typing:

sudo ./load_alt_up_pci_driver.sh tutorial_config file

Note that you need to pass the file name of the configuration file as the first argument to the shell script, otherwise
the script will use config_file as default. If you have changed the makefile when compiling the driver codes, you
have to modify the variable DRV_MODULE in the shell script to match the name of your .ko module file.

This script requires that your account has the administrator right. After typing in the password, you will see Matching
Device Found on success, or Matching Device Not Found when failed. If the module is successfully loaded, the
script will automatically create a character special file alt_up_pciO in directory /dev/. This file is important because
it represents the DE4 device and you will need to access it when you want to use the driver.

Since the driver is loaded into the kernel, the information printed out by the driver will not show on the terminal
window directly. Instead, they will be printed as driver messages. To see the driver messages, type command:

dmesg

The driver messages are important messages to check the status of the driver especially when you encounter prob-
lems. You should be able to see similar driver messages shown in Figure 21 after you have loaded the driver module
successfully.

Intel Corporation - FPGA University Program 23
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

Terminal

File Edit View Search Terminal Help

|
alt up pci init(), build at Oct 24 2011 16:13:32
alt up pcl 0000:08:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16
alt up pci 0000:08:00.0: setting latency timer to 64
alt up pci BAR® initialized.
alt up pci BAR2 initialized.
alt up pci DMA® initialized as typel.
alt up pci DMAL initialized as type2.
alt up pci PEOO:08:00.0: irg 32 for MSI/MSI-X L:
bash-4.15 [] ©

Figure 21. Messages shown on the terminal

If you want to remove the module from the kernel, you can use the shell script below:

sudo ./unload_alt_up_pci_driver.sh

4.3 How to Use the Driver

To help you understand how to use the driver, a demo application is provided. The application will ask you to
input a sentence and the sentence will be sent to the on-chip memory of the DE4 board. Then the Nios II processor
will change the sentence, modifying letters from lower-case to upper-case and vice versa. After the processing, the
application will read the sentence back and print it on the screen. To ensure the data is shared correctly between the
PC host and the DE4 board, one byte (0xO0000FFF) in the on-chip memory is used to as a flag to indicate who owns
the control of the data. ‘H’ means the data is owned by the host while ‘B’ means it’s owned by the board. When the
data is owned by one side, the other side should do nothing other than polling the control byte.

Figure 22 shows the simplified code of the demo application, which does not contain error checking. You can find
the complete code demo.c in directory design_files/demo.

24 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

0NN kW=

[N T NS T NS I NS R e e et e
W= OO0k W= OO

24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41

USING PCI EXPRESS ON DE4 BOARDS

For Quartus® Prime 18.1

#include <stdio.h>
#include <string.h>
#include "alt_up_pci_lib.h"

#define ONCHIP_CONTROL 0x00000FFF
#define ONCHIP_DATA 0x00001000
#define MAX_DATA_SIZE 4096
#define CTRLLER_ID O

int main () {
int fd, length_str;
char buff [MAX_DATA_SIZE], control;

alt_up_pci_open(&fd, "/dev/alt_up_pciO");

control = ’'H’;

alt_up_pci_write(fd, BARO, ONCHIP_CONTROL, &control, sizeof (control)

while (1) {
fgets(buff, MAX_DATA_SIZE, stdin);
length_buff = strlen(buff) + (8 0 — (strlen(buff)%8));

alt_up_pci_dma_add (fd, CTRLLER_ID, ONCHIP_DATA, buff, length_str,

TO_DEVICE) ;
alt_up_pci_dma_go (fd, CTRLLER_ID, INTERRUPT);

control = ’'"B’;

alt_up_pci_write (fd, BARO, ONCHIP_CONTROL, é&control, sizeof (control)

while(control != ’"H’)
alt_up_pci_read(fd, BARO, ONCHIP_CONTROL, &control,

alt_up_pci_dma_add (fd, CTRLLER_ID, ONCHIP_DATA, buff, length_str,

FROM_DEVICE) ;
alt_up_pci_dma_go(fd, CTRLLER_ID, INTERRUPT) ;

printf ("Received : \n%s\n", buff);

alt_up_pci_close(£fd);

return 0O;

Figure 22. Simplified code for demo application

)i

sizeof (control)

As you can see in Figure 22, there are six functions prefixed with alt_up_pci_. These functions are provided in the

header file alt_up_pci_lib.h. The descriptions of the functions are shown below. Note that all these functions will

return 0 on success, and return —1 when failed.

Intel Corporation - FPGA University Program
March 2019

25

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

alt_up_pci_open() — This function is used to open the DE4 device file.

You will have to input the character special file of the device, which in this case is alt_up_pci0, then you will
get a file descriptor. After calling this function successfully, you can start using other functions to perform
operations on the DE4 board.

alt_up_pci_close() — This function used to close the DE4 device file.
You will have to pass the file descriptor got from alt_up_pci_open() to the function. This function should be
called at the end of the application.

alt_up_pci_read() — This function is used to do the read operation.
You will have to select which BAR to read from and what is the starting address of the read operation. Also,
you need to pass a pointer to the buffer and the size of the buffer to the function.

alt_up_pci_write() — This function is used to do the write operation.

This function is similar to alt_up_pci_read() and does the write operation instead.

alt_up_pci_dma_add() — This function is used to add a DMA transfer into the queue of the DMA controller.

Inside the driver, there is a queue for each DMA controller. You are allowed to push up to ten DMA transfers
into the queue before the DMA controller really performs the transfers. You will need to pick a DMA con-
troller to perform the transfer, and give it the pointer to the buffer, the address in the DE4 board, how many
bytes you want to transfer and the direction of the transfer. Note that the driver will not check the overflow of
the address, so the application is responsible to ensure that the DMA controller is not reading from or writing
to an illegal address.

alt_up_pci_dma_go() — This function is used to start the DMA transfers in the queue.

By calling this function, the selected DMA controller will start performing all the DMA transfers in the queue,
and it will use either polling or interrupt to check whether a transfer is finished.

The header file alt_up_pci_lib.h also contains three enum types for the BARs, the direction of the DMA, and the
method of checking to increase the readability of the codes. We recommend you to include this file when you are
writing your own application.

Pay attention to the transfer length when using the DMA Controller, because the data length have to match the
settings you made for the DMA Controller. In this tutorial, an error will occur, if the length is not a multiple of 8 or
the address is not aligned with 8 bytes.

4.4 Running the Demo Application

To try the demo application, compile and run the demo codes in the demo folder. By typing sentence into the terminal
and typing Enter to send the sentence, you can see how the sentence is changed by the Nios II processor. You can
also change the value of CTRLLER_ID in the demo.c to select a different DMA controller.

The code shown in Figure 23 is the code run by the Nios II processor. It is downloaded to the on-chip memory by

adding the onchip_memory2_0.hex during the compile time.

26 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

[c BN e NV I O R

(NS (SR (ST (S SO N NS I NS I S R O R e el el e e il e
O AN WP, OOV INWN PR WD — OO

USING PCI EXPRESS ON DE4 BOARDS

For Quamm@ Prime 18.1

#include <stdio.h>

volatile char xonchip_control = (char x) O0xO0O0OOOFFEF;
volatile char xonchip_data = (char) 0x00001000;
int main() {

int i;

char ch;

while(1) {

while(*onchip_control != 'B’)
r
i = 0;
while((ch = x(onchip_data + i)) != "\n’) {
if (ch >= "a’ && ch <= "'z")
* (onchip_data + 1) = ch - "a’" + 'A’;
else if (ch >= "A" && ch <= "7Z")
* (onchip_data + i) = ch - "A" + "a’;
else
* (onchip_data + i) = ch;
i++;
}
xonchip_control = ’H’

}

return O;

Figure 23. Program run by the Nios II Processor

4.5 Reprogramming the FPGA without Rebooting the Host Computer

After you successfully configure the FPGA and install the driver on your host computer, you may still want to modify
your PCI Express settings on the FPGA and reprogram it. However, reprogramming the FPGA will disable the con-
nection between the FPGA and the host computer. It requires you to reboot the host computer and reload the driver
every time you download a new configuration onto the FPGA, which is inconvenient and time-consuming. Here we
provide a way to reprogram the FPGA without rebooting the host computer if a valid PCI Express connection has

already been established:

1. To save the PCI Express registers, go to the demo folder, run:

i reprogram Save

2. Program a new image(.sof) on FPGA following the instructions in section 3.4. Note that the memory space,
the Vendor ID and the Device ID of the PCI Express shouldn’t be changed in Platform Designer, otherwise

restoring the register information will give the wrong information to the host computer.

Intel Corporation - FPGA University Program
March 2019

27

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

3. Then we need to restore the registers information, go to the demo folder, run:

./reprogram restore

4. Go to the driver folder to unload and reload the driver using:
.Junload_alt_up_pci_driver.sh

./load_alt_up_pci_driver.sh tutorial_config_file

The device connection should be re-established.

5 Changing the Driver

Now, you can start building your own system and applications. However, if you are not satisfied with the func-
tionality provided by the driver and want to design your custom driver, you can read the index.html in directory
design_files/doc/html. This file is generated by the Doxygen and it will give you a general idea of the driver, so that
you can change it.

28 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING PCI EXPRESS ON DE4 BOARDS For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program 29
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Background
	3 Building the PCI Express System
	3.1 Creating a Platform Designer System
	3.2 Adding PLL Using IP Catalog
	3.3 Integrating modules into the Quartus® Prime Project
	3.4 Programming and Configuration

	4 Using the Driver
	4.1 Creating the Configuration File
	4.2 Load the Driver Module into the Kernel
	4.3 How to Use the Driver
	4.4 Running the Demo Application
	4.5 Reprogramming the FPGA without Rebooting the Host Computer

	5 Changing the Driver

