
Using the Accelerometer on
DE-SoC Boards

For Quartus® Prime 18.1

1 Introduction

This tutorial describes how to use the ADXL345 accelerometer on the DE10-Standard, DE10-Nano, DE1-SoC, and
DE0-Nano-SoC boards. For using the ADXL345 accelerometer on the DE0-Nano and VEEK-MT boards, please
refer to the document Accelerometer SPI Mode Core for DE-Series Boards instead.

The reader is expected to have a basic knowledge of the C programming language, and be familiar with the Intel
FPGA Monitor Program. Some knowledge of the I2C serial communications protocol is beneficial, but not neces-
sary.

Contents:

• A description of the ADXL345 digital accelerometer

• Communicating with the ADXL345 device on DE-SoC boards

• Using the Cyclone® V HPS’s I2C0 controller

• Writing C-language code to operate the ADXL345 device using I2C0

2 The ADXL345 Digital Accelerometer

The ADXL345 device is a 3-axis accelerometer manufactured by Analog Devices Corporation. It provides acceler-
ation measurements in the x, y, and z axes up to a maximum of +/- 16 g (g = 9.81 m/s2). It is capable of sampling
acceleration at regular intervals and storing the measured data for later access by an external device such as a pro-
cessor. Communication with the ADXL345 device is done using an I2C serial bus. In a typical application, software
code running on a processor uses an I2C master to access the ADXL345 device’s internal registers. These registers
are described in the following section.

2.1 The ADXL345 Internal Registers

An abbreviated list of the ADXL345 internal registers is shown in Table 1. These registers have a width of 8 bits.
Only a minimal set of registers required for reading basic acceleration data is described below. For the complete list
of registers and detailed descriptions, please refer to the ADXL345 datasheet.

Intel Corporation - FPGA University Program
March 2019

1

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

Table 1. ADXL345 Internal Registers (Abbreviated)
Address Register name Read/Write Reset Value Purpose

0x00 DEVID R 11100101 Device ID (0xE5)
0x2C BW_RATE R/W 00001010 Data rate and power mode control
0x2D POWER_CTL R/W 00000000 Power state control
0x30 INT_SOURCE R 00000010 Source of interrupts
0x31 DATA_FORMAT R/W 00000000 Data format control
0x32 DATAX0 R 00000000 X-Axis Data 0
0x33 DATAX1 R 00000000 X-Axis Data 1
0x34 DATAY0 R 00000000 Y-Axis Data 0
0x35 DATAY1 R 00000000 Y-Axis Data 1
0x36 DATAZ0 R 00000000 Z-Axis Data 0
0x37 DATAZ1 R 00000000 Z-Axis Data 1

2.1.1 DEVID (0x00)

This register always holds a static value of 0xE5. Reading this register and checking to see that the value 0xE5 is
returned can be used as a quick test to see if the I2C connection is working correctly.

2.1.2 BW RATE (0x2C)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

0 0 0 LOW_POWER Rate

This register is used to set the sampling rate of the the accelerometer. The default value is 0x0A, which translates to a
sampling rate of 100 Hz. Values between 0x0 and 0xF can be written to the Rate bits, which correspond to sampling
rates between 0.098 Hz to 3200 Hz (each increment to Rate doubles the sampling rate). The LOW_POWER bit can
be set to 1 to turn on low power mode, but doing so will add noise to the measured data and is not recommended.

2.1.3 POWER CTL (0x2D)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

0 0 Link Auto_sleep Measure Sleep Wakeup

This register is used to configure settings related to the power states of the accelerometer, such as sleep and wakeup.
For our purposes, we use only the Measure bit of this register, which turns on measurement of acceleration data
when it is set to 1, and turns it off when set to 0.

2.1.4 INT SOURCE (0x30)

bit7 bit6 bit5 bit4

Data_ready Single_tap Double_tap Activity
bit3 bit2 bit1 bit0

Inactivity Free_fall Watermark Overrun

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

This register indicates which of eight possible interrupt events has triggered an interrupt signal. Although we do
not use interrupts in this tutorial, this register’s Data_ready bit can be used to determine whether there is a new
acceleration sample that can be read from the DATA registers.

2.1.5 DATA FORMAT (0x31)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Self_test SPI Int_invert 0 Full_res Justify Range

Bits 0-3 of this register control the format of the data stored in the DATA registers. The Range bits control the g
range, and can be set to 0b00 (+/- 2 g), 0b01 (+/- 4 g), 0b10 (+/- 8 g), or 0b11 (+/- 16 g). The Justify selects
left-justified mode when set to 1, and right-justified mode when set to 0. Writing 1 to Full_res enables the full
resolution mode, which forces the least significant bit (LSB) of the sample to represent 3.9 mg. If full resolution
mode is disabled, the data will be limited to 10 bits, and the LSB will represent whatever scale factor is required to
cover the range with 10 bits. For example, selecting the +/- 4 g range (total range of 8000 mg) with full resolution
mode disabled would result in the LSB representing 7.8 mg (8000mg /210 = 7.8mg ). The other bits of this register
are used for miscellaneous settings that are not important for the purposes of this tutorial.

2.1.6 DATA Registers (0x32-0x37)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Data

These registers hold the acceleration data for the three axes. DATA_X0 (0x32) and DATA_X1 (0x33) hold the data
for the x-axis, DATA_Y0 (0x34) and DATA_Y1 (0x35) hold the data for the y-axis, and DATA_Z0 and DATA_Z1
hold the data for the z-axis. The latter of each pair of registers holds the most significant bits of the sample for that
axis, and together they form a 16-bit 2’s complement value. To ensure that these registers are not altered during
a read of a sample, an I2C master must perform a single multiple-byte read of these registers rather than multiple
single-byte reads.

2.1.7 THRESH ACT, THRESH INACT, TIME INACT, ACT INACT CTL (0x24 - 0x27)

These registers allow you to configure interrupts based on activity (changes in acceleration data). The THRESH_ACT
and THRESH_INACT registers are used to store eight-bit threshold values (where the values are 62.5 mg/LSB) to
detect activity and inactivity, respectively. The TIME_INACT register is used to store an eight-bit value representing
the amount of time that acceleration must be less than the value in THRESH_INACT for inactivity to be triggered.
The ACT_INACT_CTL register is used to enable or disable activity detection in the X, Y, and Z axes.

Intel Corporation - FPGA University Program
March 2019

3

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

3 Communicating with the ADXL345

Communcation with the ADXL345 (the reading and writing of its internal registers) is done through its I2C serial
interface. On the DE1-SoC and DE0-Nano-SoC boards, the ADXL345’s I2C wires are connected to the Cyclone
V HPS, as shown in Figure 1. These wires are then routed through the Pin Multiplexer (Pin Mux) block, shown in
Figure 2, which can be configured to route the signals to I2C0 (an I2C controller), GPIO1 (a GPIO controller), or to
the FPGA where they can be connected to any user-defined circuit.

ADXL345 DE Board

Cyclone V
HPS

I2C0

Pin
Mux

GPIO1

ARM

MPCore

Cortex A9

Cyclone V
FPGA

Figure 1. The ADXL345’s I2C connection to the Cyclone V SoC chip on DE-Series boards.

Cyclone V SoC

HPS

GPIO1

FPGA

I2C0
ADXL345 AI2C

...

B0
1

C 0
10

1

2,3

Pin Mux

GENERALIO7/8

GENERALIO7/8
0123

GENERALIO7/8
0123

G
PL

M
U

X5
5/

56

I2C0USEFPGA
0 1

...

G
PL

M
U

X
55

/5
6

I2C0

Cyclone V
HPS

...

...

...

GPIO1

FPGA

FPGA0
1

ADXL345

Figure 2. The Pin Mux block in more detail.

4 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

3.1 The Pin Multiplexer

In this tutorial we will configure the Pin Mux block to route the ADXL345’s I2C signals to I2C0, which is an I2C
controller built into the Cyclone V HPS. As we will see in Section 3.2, I2C0 provides a convenient memory-mapped
register interface that makes it easy to access the ADXL345 internal registers.

Table 2. Pin Mux Registers*
Multiplexer Register name Address Reset Value

GENERALIO7/8
GENERALIO7 0xFFD0849C 0x0
GENERALIO8 0xFFD084A0 0x0

GPLMUX55/56
GPLMUX55 0xFFD086B0 0x0
GPLMUX56 0xFFD086B4 0x0

I2C0USEFPGA I2C0USEFPGA 0xFFD08704 0x0
* these registers belong to the HPS’s System Manager Module

We can see from Figure 2 that in order to route the I2C signals to I2C0, multiplexer GENERALIO7/8 should be
configured to "1", and I2C0USEFPGA to "0". These multiplexers are controlled by memory-mapped registers, as
shown in Table 2. Figure 3 gives C code that writes to these registers to achieve our desired routing. Note that
the multiplexers GENERALIO7/8 and GPLMUX55/56 each comprise two multiplexers. While the multiplexers of
each pair are controlled by registers at different addresses, they should always be configured identically. In contrast,
I2C0USEFPGA is a single multiplexer, and is configured by a single register.

1 #define SYSMGR_GENERALIO7 ((volatile unsigned int *) 0xFFD0849C)
2 #define SYSMGR_GENERALIO8 ((volatile unsigned int *) 0xFFD084A0)
3 #define SYSMGR_I2C0USEFPGA ((volatile unsigned int *) 0xFFD08704)
4
5 void configure_pinmux(){
6 *SYSMGR_I2C0USEFPGA = 0;
7 *SYSMGR_GENERALIO7 = 1;
8 *SYSMGR_GENERALIO8 = 1;
9 }

Figure 3. C code that configures Pin Mux to connect the ADXL345 I2C wires to I2C0

Note that there are alternatives to using I2C0. For instance, connecting the ADXL345 to the GPIO controller
(GPIO1) would allow the data pins of the GPIO to directly control the I2C wires - this could be done using software
code that writes to the GPIO’s data register.

3.2 The I2C0 Controller

I2C0 is one of four I2C controllers (I2C0 - I2C3) built into the Cyclone V HPS. These generic I2C controllers are
designed to be capable of communicating in the I2C serial protocol with any I2C-compatible device such as the
ADXL345. These controllers provide memory-mapped register interfaces that programs can use to communicate
with connected I2C devices. A benefit to using the I2C controller is that it provides a high-level interface that
abstracts away many of the low-level details involved in the I2C communication protocol.

Intel Corporation - FPGA University Program
March 2019

5

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

We will use I2C0’s memory-mapped register interface to communicate with the ADXL345. An abbreviated list of
I2C0’s memory-mapped registers is shown in Table 3, and further descriptions of these registers are provided in the
following subsections. These registers have a width of 32 bits.

Table 3. I2C0 Controller Register Address Map (0xFFC04000)
Offset Register name Read/Write Reset Value Purpose

0x0 ic_con R/W 0x7D Control Register
0x4 ic_tar R/W 0x1055 Target Address Register
0x10 ic_data_cmd R/W 0x0 Tx Rx Data and Command Register
0x1C ic_fs_scl_hcnt R/W 0x3C SCL High Count Register (Fast Speed)
0x20 ic_fs_scl_lcnt R/W 0x82 SCL Low Count Register (Fast Speed)
0x40 ic_clr_intr R 0x0 Clear All Interrupts Register
0x6C ic_enable R/W 0x0 Enable Register
0x74 ic_txflr R 0x0 Transmit FIFO Level Register
0x78 ic_rxflr R 0x0 Receive FIFO Level Register
0x9C ic_enable_status R 0x0 Enable Status Register

If you would like a more detailed description of the I2C controller, refer to the document Cyclone V Device Hand-
book, Volume 3: Hard Processor System Technical Reference Manual. For the complete list of I2C0’s registers, refer
to the document Cyclone V SoC HPS Address Map and Register Definitions.

3.2.1 ic con (0x0)

Bit Name Access Reset
31 - 7 Reserved
6 ic_slave_disable RW 0x1
5 ic_restart_en RW 0x1
4 ic_10bitaddr_master RW 0x1
3 ic_10bitaddr_slave RW 0x1
2 - 1 speed RW 0x2
0 master_mode RW 0x1

This register is used to set the operating mode of I2C0. The master_mode bit controls whether I2C0 acts as an I2C
master or slave. A value of 0x1 selects master mode, and 0x0 selects slave mode. The speed bits control whether
I2C0 operates in fast mode (400 kbit/s) or slow mode (100 kbit/s). The value of 0x2 selects fast mode and 0x1 selects
slow mode. The ic_10bitaddr_slave and ic_10bitaddr_master bits select whether I2C0 uses 7-bit or
10-bit addressing when functioning as a slave or a master, respectively. The value of 0x0 selects 7-bit addressing,
and 0x1 selects 10-bit addressing. The ic_restart_en bit enables or disables sending the restart condition to
the I2C slave, when I2C0 acts as a master. The ic_slave_disable bit controls whether I2C0 should function
as a slave, and should be set to 0x1 when I2C0 should act as a master, and 0x0 when it should act as a slave.

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

For our purposes, we write 0x65 to this register. This configures I2C0 to:

• function as an I2C master
• run in fast mode (400 kbit/s)
• use 7-bit addressing mode, which is the addressing mode supported by the ADXL345
• use restart conditions, since this feature is supported by the ADXL345

3.2.2 ic tar (0x4)

Bit Name Access Reset
31 - 13 Reserved
12 ic_10bitaddr_master RW 0x1
11 special RW 0x0
10 gc_or_start RW 0x0
9 - 0 ic_tar RW 0x55

This register is used to configure I2C0’s communication with a slave. The target slave is selected by writing its
slave address to the ic_tar bits. The ic_10bitaddr_master bit controls whether I2C0 uses 7-bit or 10-
bit addressing mode when addressing the slave. Writing 0x1 to this bit selects 10-bit addressing, while writing
0x0 selects 7-bit addressing. For our purposes, we write 0x53 (the slave address of the ADXL345) to ic_tar
and set ic_10bitaddr_master to 0x0, as the ADXL345 supports 7-bit addressing. The gc_or_start and
special bits are not useful for our purposes.

3.2.3 ic data cmd (0x10)

Bit Name Access Reset
31 - 11 Reserved
10 restart W 0x0
9 stop W 0x0
8 cmd W 0x0
7 - 0 dat RW 0x0

This register is used to send or receive a byte to or from the ADXL345. When sending, the byte is written to dat,
along with a 0x0 to cmd. When receiving, a 0x1 is first written to cmd, which sends a read request to the ADXL345.
Once the ADXL345 replies with a byte, it can be read from dat. The stop bit is set to 0x1 when a stop signal
should be sent after the byte. The restart bit is set to 0x1 when a restart signal should be sent before the byte.
Note that stop, restart, cmd and dat are written together; a stop or restart signal cannot be sent independently
of a byte.

Intel Corporation - FPGA University Program
March 2019

7

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

3.2.4 ic fs scl hcnt (0x1C)

Bit Name Access Reset
31 - 16 Reserved
15 - 0 ic_fs_scl_hcnt RW 0x3C

This register is used to configure the serial clock signal (SCL) that is used for synchronizing data bits sent/received
by I2C0. The ic_fs_scl_hcnt register sets the SCL clock’s high period when running in the 400 kbit/s (fast)
mode. The value written to this register corresponds to the number of cycles of the input clock to the I2C0 for which
the SCL should remain high in each SCL clock period. The input clock to the ADXL345 is controlled the HPS, and
is by default 100 MHz. We set the content of this register to 90, as described in Section 4.2.

3.2.5 ic fs scl lcnt (0x20)

Bit Name Access Reset
31 - 16 Reserved
15 - 0 ic_fs_scl_lcnt RW 0x82

This register is used to configure the serial clock signal (SCL) that is used for synchronizing data bits sent/received
by I2C0. The ic_fs_scl_lcnt register sets the SCL clock’s low period when running in the 400 kbit/s (fast)
mode. The value written to this register corresponds to the number of cycles of the input clock to the I2C0 for which
the SCL should remain low in each SCL clock period. The input clock to the ADXL345 is controlled the HPS, and
is by default 100 MHz. We set the content of this register to 160, as described in Section 4.2.

3.2.6 ic clr intr (0x40)

Bit Name Access Reset
31 - 1 Reserved
0 clr_intr R 0x82

This register is used to clear software-clearable interrupts. A read of this register triggers the clear. For our purposes,
we read this register when first initializing the I2C0 to clear any currently-pending interrupts.

3.2.7 ic enable (0x6C)

Bit Name Access Reset
31 - 2 Reserved
1 txabort RW 0x0
0 enable RW 0x0

This register is used to enable or disable I2C communication. A 0x1, or 0x0, is written to enable to enable, or
disable, I2C communication, respectively. A 0x1 is written to txabort to abort any pending transmissions.

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

3.2.8 ic txflr (0x74)

Bit Name Access Reset
31 - 7 Reserved
6 - 0 txflr R 0x0

This register reports the number of valid data entries currently in I2C0’s transmit FIFO buffer. When txflr is
greater than 0, it means that there are bytes waiting to be sent to the ADXL345.

3.2.9 ic rxflr (0x78)

Bit Name Access Reset
31 - 7 Reserved
6 - 0 rxflr R 0x0

This register reports the number of valid data entries currently in I2C0’s receive FIFO buffer. When rxflr is greater
than 0, it means that there are bytes that I2C0 has received from the ADXL345 that we have not yet read.

3.2.10 ic enable status (0x9C)

Bit Name Access Reset
31 - 3 Reserved
2 slv_rx_data_lost R 0x0
1 slv_disabled_while_busy R 0x0
0 ic_en R 0x0

This register is used to check whether I2C0 has reached the enabled state. After writing a 0x1 to the enable bit in
the ic_enable register, we poll this register until the ic_en bit becomes 0x1, signalling that I2C0 is ready for
operation. Similarly, after writing a 0x0 to the enable bit, we poll until ic_en becomes 0x0, signalling that I2C0
has been disabled.

Intel Corporation - FPGA University Program
March 2019

9

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

4 Using the Accelerometer in C-Language Code

The following sections provide C-language code for configuring and operating the ADXL345, the I2C0 controller,
and the Pin Multiplexer block. This code can also be found in the files ADXL345.c and ADXL345.h which
accompany this tutorial. The code should be compiled, loaded, and executed using the Intel FPGA Monitor Program.
If you are not familiar with the Intel FPGA Monitor Program you can refer to the document Intel FPGA Monitor
Program Tutorial.

4.1 Configuring the Pin Multiplexer

As described in Section 3.1, the first step in using the ADXL345 is to configure the Pin Mux block in the Cy-
clone V HPS to connect the ADXL345’s I2C wires to I2C0. Figure 4 shows the function Pinmux_Config()
that accomplishes this. The function writes to the memory-mapped registers GENERALIO7, GENERALIO8, and
I2C0USEFPGA which control multiplexers inside the Pin Mux block (shown in Figure 2).

1 void Pinmux_Config(){
2 *SYSMGR_I2C0USEFPGA = 0;
3 *SYSMGR_GENERALIO7 = 1;
4 *SYSMGR_GENERALIO8 = 1;
5 }

Figure 4. C code that configures Pin Mux to connect the ADXL345’s I2C wires to I2C0

4.2 Configuring I2C0

Once the ADXL345’s I2C wires are connected to I2C0, you must configure I2C0 for communication with the
ADXL345. Figure 5 shows the function I2C0_Init() that configures I2C0 with the appropriate settings. Impor-
tant lines of the code are described below:

• Line 4 aborts any pending transmissions and disables I2C0. This is required before modifying any of I2C0’s
settings.

• Line 7 polls the enable status register until the I2C0 is fully disabled.

• Line 11 writes 0x65 to I2C0_CON, which configures I2C0 to:

– function as an I2C master. It will control the ADXL345, which functions as the slave.
– run in fast mode (400 kbit/s), as supported by the ADXL345.
– use 7-bit addressing mode, as required by the ADXL345.
– use restart conditions, as supported by the ADXL345.

• Line 14 writes 0x53 to I2C0_TAR, which configures I2C0 to target the ADXL345.

• Lines 19 and 20 configure the SCL clock that will drive the ADXL345. The ADXL345 requires the SCL clock
period to be at least 2.5 µs, the SCL high time to be at least 0.6 µs, and the SCL low time to be at least 1.3 µs.
All three conditions are met by setting the high period to be 0.9 µs (90 cycles of the 100 MHz input clock to
I2C0), and setting the low period to be 1.6 µs (160 cycles of the 100 MHz input clock to I2C0).

10 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

• Line 23 re-enables I2C0 now that all settings have been configured, and Line 26 waits until I2C0 reaches its
operational state.

1 void I2C0_Init(){
2
3 // Abort any ongoing transmits and disable I2C0.
4 *I2C0_ENABLE = 2;
5
6 // Wait until I2C0 is disabled
7 while(((*I2C0_ENABLE_STATUS)&0x1) == 1){}
8
9 // Configure the config reg with the desired setting (act as

10 // a master, use 7bit addressing, fast mode (400kb/s)).
11 *I2C0_CON = 0x65;
12
13 // Set target address (disable special commands, use 7bit addressing)
14 *I2C0_TAR = 0x53;
15
16 // Set SCL high/low counts (Assuming default 100MHZ clock input to

I2C0 Controller).
17 // The minimum SCL high period is 0.6us, and the minimum SCL low

period is 1.3us,
18 // However, the combined period must be 2.5us or greater, so add 0.3us

to each.
19 *I2C0_FS_SCL_HCNT = 60 + 30; // 0.6us + 0.3us
20 *I2C0_FS_SCL_LCNT = 130 + 30; // 1.3us + 0.3us
21
22 // Enable the controller
23 *I2C0_ENABLE = 1;
24
25 // Wait until controller is powered on
26 while(((*I2C0_ENABLE_STATUS)&0x1) == 0){}
27 }

Figure 5. A function that configures I2C0.

Intel Corporation - FPGA University Program
March 2019

11

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

4.3 Reading and Writing the ADXL345 Internal Registers

Once the ADXL345’s I2C wires are routed to I2C0 and I2C0 has been configured, you can use I2C0’s memory-
mapped registers to read and write the ADXL345 internal registers.

The ADXL345_REG_READ(uint8_t address, uint8_t *value) function shown in Figure 6 performs
a read of a single internal register at internal address address and writes the value read into value. It does this
in three steps. First, it sends the address of the target register, along with a START signal (line 5). Second, it sends
the read request (line 8). Finally in lines 11 and 12, the function waits until I2C0 has received a response from
ADXL345, then writes the value to value.

1 // Read value from internal register at address
2 void ADXL345_REG_READ(uint8_t address, uint8_t *value){
3
4 // Send reg address (+0x400 to send START signal)
5 *I2C0_DATA_CMD = address + 0x400;
6
7 // Send read signal
8 *I2C0_DATA_CMD = 0x100;
9

10 // Read the response (first wait until RX buffer contains data)
11 while (*I2C0_RXFLR == 0){}
12 *value = *I2C0_DATA_CMD;
13 }

Figure 6. A function that reads the ADXL345 internal registers.

The ADXL345_REG_WRITE(uint8_t address, uint8_t value) function shown in Figure 7 writes the
value value to the internal register at address address. It does this in two steps. First, it sends the address of the
target register, along with a START signal. Then it sends the value value.

1 // Write value to internal register at address
2 void ADXL345_REG_WRITE(uint8_t address, uint8_t value){
3
4 // Send reg address (+0x400 to send START signal)
5 *I2C0_DATA_CMD = address + 0x400;
6
7 // Send value
8 *I2C0_DATA_CMD = value;
9 }

Figure 7. A function that writes to ADXL345 internal registers.

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

The ADXL345_REG_MULTI_READ(uint8_t address, uint8_t values[], uint8_t len) func-
tion shown in Figure 8 performs a read of len consecutive internal registers, starting at internal address address.
It stores the values read in the array values. This function is used when reading the six DATA registers inside the
ADXL345, which are at consecutive addresses 0x32 - 0x37. Because this function performs a single read of multi-
ple consecutive registers, it ensures that none of the DATA registers are modified while the read is being performed.
This operation is preferable to performing multiple single reads, where the DATA registers could be modified if the
ADXL345 samples its acceleration values in between the reads.

1 // Read multiple consecutive internal registers
2 void ADXL345_REG_MULTI_READ(uint8_t address, uint8_t values[], uint8_t

len){
3
4 // Send reg address (+0x400 to send START signal)
5 *I2C0_DATA_CMD = address + 0x400;
6
7 // Send read signal len times
8 int i;
9 for (i=0;i<len;i++)

10 *I2C0_DATA_CMD = 0x100;
11
12 // Read the bytes
13 int nth_byte=0;
14 while (len){
15 if ((*I2C0_RXFLR) > 0){
16 values[nth_byte] = *I2C0_DATA_CMD;
17 nth_byte++;
18 len--;
19 }
20 }
21 }

Figure 8. A function that reads len consecutive registers.

4.4 Configuring the ADXL345

The ADXL345 has various settings that can be configured to alter its operation. These settings are configured by
writing to the ADXL345 control registers, which you can do using the ADXL345_REG_WRITE function. Figure 9
shows the function ADXL345_Init() which configures the ADXL345 to run in +/- 16 g mode, and sample
acceleration at a rate of 100 Hz. It also configures the ADXL345 to run in full resolution mode, which forces a
resolution of 3.9 mg (the least significant bit of the DATA values represents 3.9 mg).

Intel Corporation - FPGA University Program
March 2019

13

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

1 // Initialize the ADXL345 chip
2 void ADXL345_Init(){
3
4 // +- 16g range, full resolution
5 ADXL345_REG_WRITE(ADXL345_REG_DATA_FORMAT, XL345_RANGE_16G |

XL345_FULL_RESOLUTION);
6
7 // Output Data Rate: 200Hz
8 ADXL345_REG_WRITE(ADXL345_REG_BW_RATE, XL345_RATE_200);
9

10 // The DATA_READY bit is not reliable. It is updated at a much higher
rate than the Data Rate

11 // Use the Activity and Inactivity interrupts as indicators for new
data.

12 ADXL345_REG_WRITE(ADXL345_REG_THRESH_ACT, 0x04); //activity threshold
13 ADXL345_REG_WRITE(ADXL345_REG_THRESH_INACT, 0x02); //inactivity

threshold
14 ADXL345_REG_WRITE(ADXL345_REG_TIME_INACT, 0x02); //time for inactivity
15 ADXL345_REG_WRITE(ADXL345_REG_ACT_INACT_CTL, 0xFF); //Enables AC

coupling for thresholds
16 ADXL345_REG_WRITE(ADXL345_REG_INT_ENABLE, XL345_ACTIVITY |

XL345_INACTIVITY ); //enable interrupts
17
18 // stop measure
19 ADXL345_REG_WRITE(ADXL345_REG_POWER_CTL, XL345_STANDBY);
20
21 // start measure
22 ADXL345_REG_WRITE(ADXL345_REG_POWER_CTL, XL345_MEASURE);
23 }

Figure 9. A function that configures the ADXL345 mode of operation.

4.5 Reading the Acceleration Data

Now that the ADXL345 is configured for operation, you can read acceleration data from its DATA registers. Fig-
ure 10 shows the function ADXL345_XYZ_READ(int16_t szData16[3]) which reads the acceleration for
the X, Y and Z axes and stores the data in szData16[0], szData16[1], and szData16[2], respectively.
Line 5 calls ADXL345_REG_MULTI_READ to read the ADXL345’s six DATA registers. This reads two registers
for each axis, one representing the bottom 8 bits and the other representing the top 8 bits of the acceleration sample.
Lines 7 to 9 combine these two halves for each axis and write the 16-bit values into szData16. The least-significant
bit of these values represents 3.9 mg, and the values range from -4096 to 4095 (a resolution of 13 bits).

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

1 // Read acceleration data of all three axes
2 void ADXL345_XYZ_Read(int16_t szData16[3]){
3
4 uint8_t szData8[6];
5 ADXL345_REG_MULTI_READ(0x32, (uint8_t *)&szData8, sizeof(szData8));
6
7 szData16[0] = (szData8[1] << 8) | szData8[0];
8 szData16[1] = (szData8[3] << 8) | szData8[2];
9 szData16[2] = (szData8[5] << 8) | szData8[4];

10 }

Figure 10. A function that reads the acceleration data for the x, y, and z axes.

The ADXL345 is set to sample acceleration 100 times a second, which is very slow relative to a modern processor.
This makes it possible for a program to read the ADXL345 far more often than 100 times each second, leading
to duplicate reads of the same samples. To prevent this, we can check the Data_ready bit of the ADXL345’s
INT_SOURCE register and only call ADXL345_XYZ_Read when there is new data available. Figure 11 shows the
function ADXL345_IsDataReady() which checks the Data_ready bit and returns true if there is new data,
and false otherwise.

1 // Return true if there is new data
2 bool ADXL345_IsDataReady(){
3 bool bReady = false;
4 uint8_t data8;
5
6 ADXL345_REG_READ(ADXL345_REG_INT_SOURCE,&data8);
7 if (data8 & XL345_ACTIVITY)
8 bReady = true;
9

10 return bReady;
11 }

Figure 11. A function that checks if there is new acceleration data.

4.6 Putting it All Together: An Example C Program

Figure 12 shows a simple program that calls the functions described in the previous sections to initialize the required
components and then loops forever to read and print out acceleration data. Important lines of the code are explained
below:

• Line 1 includes the header file ADXL345.h, which contains all of the functions for working with the ADXL345
and the I2C0 controller.

• Line 11 calls the function Pinmux_Config()which configures the Pin Mux block to connect the ADXL345’s
I2C wires to I2C0.

• Line 14 calls the function I2C0_Init() which configures the I2C0 controller to communicate with the
ADXL345 chip.

Intel Corporation - FPGA University Program
March 2019

15

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

1 #include "ADXL345.h"
2 #include <stdio.h>
3
4 int main(void){
5
6 uint8_t devid;
7 int16_t mg_per_lsb = 4;
8 int16_t XYZ[3];
9

10 // Configure Pin Muxing
11 Pinmux_Config();
12
13 // Initialize I2C0 Controller
14 I2C0_Init();
15
16 // 0xE5 is read from DEVID(0x00) if I2C is functioning correctly
17 ADXL345_REG_READ(0x00, &devid);
18
19 // Correct Device ID
20 if (devid == 0xE5){
21 // Initialize accelerometer chip
22 ADXL345_Init();
23
24 while(1){
25 if (ADXL345_IsDataReady()){
26 ADXL345_XYZ_Read(XYZ);
27 printf("X=%d mg, Y=%d mg, Z=%d mg\n", XYZ[0]*mg_per_lsb,

XYZ[1]*mg_per_lsb, XYZ[2]*mg_per_lsb);
28 }
29 }
30 } else {
31 printf("Incorrect device ID\n");
32 }
33
34 return 0;
35 }

Figure 12. C code that reads acceleration data from the ADXL345

• Line 17 reads the Device ID internal register of the ADXL345 chip. If the I2C communication is working
correctly, the device ID 0xE5 is read.

• Line 22 calls the function ADXL345_Init() which configures the ADXL345 chip to start measuring accel-
eration data.

• Line 26 calls the function ADXL345_XYZ_Read(XYZ) which reads the acceleration data for all three axes,
and stores the data in the XYZ array. The least significant bit of the acceleration values read from the
ADXL345 represent 3.9 mg increments (approximately 0.038 m/s2, since g = 9.81 m/s2). To account for
this when printing out the data in line 23, the values are multiplied by mg_per_lsb to output numbers in mg
units.

16 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING THE ACCELEROMETER ON DE-SOC BOARDS For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program
March 2019

17

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 The ADXL345 Digital Accelerometer 
	2.1 The ADXL345 Internal Registers
	2.1.1 DEVID (0x00)
	2.1.2 BW_RATE (0x2C)
	2.1.3 POWER_CTL (0x2D)
	2.1.4 INT_SOURCE (0x30)
	2.1.5 DATA_FORMAT (0x31)
	2.1.6 DATA Registers (0x32-0x37)
	2.1.7 THRESH_ACT, THRESH_INACT, TIME_INACT, ACT_INACT_CTL (0x24 - 0x27)


	3 Communicating with the ADXL345
	3.1 The Pin Multiplexer
	3.2 The I2C0 Controller
	3.2.1 ic_con (0x0)
	3.2.2 ic_tar (0x4)
	3.2.3 ic_data_cmd (0x10)
	3.2.4 ic_fs_scl_hcnt (0x1C)
	3.2.5 ic_fs_scl_lcnt (0x20)
	3.2.6 ic_clr_intr (0x40)
	3.2.7 ic_enable (0x6C)
	3.2.8 ic_txflr (0x74)
	3.2.9 ic_rxflr (0x78)
	3.2.10 ic_enable_status (0x9C)


	4 Using the Accelerometer in C-Language Code
	4.1 Configuring the Pin Multiplexer
	4.2 Configuring I2C0
	4.3 Reading and Writing the ADXL345 Internal Registers
	4.4 Configuring the ADXL345
	4.5 Reading the Acceleration Data
	4.6 Putting it All Together: An Example C Program


