
Using the DE-Series ADC Controller

For Quartus® Prime 18.1

1 Introduction

This tutorial describes how to use the University Program IP core to operate the built-in Analog-to-Digital Converter
(ADC) component on the Intel® DE-series boards. It demonstrates the basic signal and timing requirements of the
ADC, and how to use the core in hardware- or software-based projects.
The tutorial is based on the assumption that the reader has basic knowledge of both the C and Verilog languages,
and is familiar with the Quartus® Prime and Platform Designer softwares.

Contents:

• Background

• The DE-Series ADC Controller

• Implementing the ADC Controller with Platform Designer and Nios® II

• Using the ADC Controller with HAL

• Implementing the ADC Controller with IP Catalog

Intel Corporation - FPGA University Program
March 2019

1

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

2 Background

Analog-to-Digital Converters are used to connect analog devices (such as a microphones) to a digital system. The
ADC performs the function of converting a continuous-valued analog signal into a discrete-valued digital one.

The DE-series FPGA boards that contain analog-to-digital converters, are shown in Table 1. ADC devices can
have different attributes such as the range of clock frequencies at which it can be driven, the range of voltages that it
can sample, the number of channels, and resolution. The attributes for the ADC devices found on DE-series boards
are summarized in Table 1.

Board ADC Chip ADC Clock Freq. Voltage Range Channels Resolution
DE0-Nano ADC128S022 0.8 - 3.2 MHz 0 - 3.3 V 8 12 bit
DE0-Nano-SoC LTC2308 0.01 - 20 MHz 0 - 5 V 8 12 bit
DE1-SoC (rev. A-E) AD7928 0.01 - 20 MHz 0 - 5 V 8 12 bit
DE1-SoC (rev. F+) LTC2308 0.01 - 20 MHz 0 - 5 V 8 12 bit
DE10-Standard LTC2308 0.01 - 20 MHz 0 - 5 V 8 12 bit
DE10-Nano LTC2308 0.01 - 20 MHz 0 - 5 V 8 12 bit
DE10-Lite MAX® 10 Internal ADC 10 MHz 0 - 5 V 6 12 bit

Table 1. DE-series boards with analog-to-digital converters

2.1 ADC Signals

The connections between the ADC connectors, the ADC device, and the FPGA vary depending on the DE-series
board. The connections are shown in Figures 1, 2, and 3.

Figure 1. Signals to and from the ADC on the DE10-Standard, DE10-Nano, DE1-SoC, and DE0-Nano-SoC

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

IN1

IN7

IN0

. .
 .

IN22x13 GPIO
Header

SCLK

CS

DIN

DOUT

FPGAADC

Figure 2. Signals to and from the ADC on the DE0-Nano

Arduino
Shield

Connector
6-Pin

Arduino

FPGA

Internal ADC
CH0

CH1

CH2

CH3

CH4

CH5

Header
(JP8)

Figure 3. Signals to and from the ADC on the DE10-Lite

The ADC receives analog signals via its input pins (each corresponding to a channel). When performing a conver-
sion, the ADC reads the signal on one of these input channels and converts it to a digital output. On the DE10-
Standard, DE10-Nano, DE0-Nano-SoC and DE1-SoC boards, these eight pins are connected to the dedicated 10-pin
ADC header. On the DE0-Nano board, these eight pins are connected to the 2x13 GPIO header on the underside
of the board. On the DE10-Lite board, the six input pins are connected to the 6-Pin header of the Arduino* Shield
Connectors.

For all boards except the DE10-Lite (whose ADC is built into the FPGA), the ADC also has four wires connected
to the FPGA. The wires are used to control the ADC and to allow communication between it and the FPGA. The
SCLK and C S signals are used to control the ADC, and are generated by circuitry in the FPGA. The SCLK signal
serves as a device clock for the ADC, while the C S signal serves as an active-low chip select for the ADC chip.
The DIN and DOUT wires are used for transferring addresses and data between the two chips. The FPGA uses the
DIN connection, which is mapped to the ADC_SADDR pin on the FPGA, to provide the address of the next channel
requested for conversion. The address is 3 bits in length, and is sent to the ADC serially at a rate of 1 bit per SCLK
cycle. The DOUT connection is mapped to the ADC_SDAT pin on the FPGA, and is used by the ADC to send the
digital value of the converted signal to the FPGA. This value is 12 bits long, and is sent to the FPGA in a serial
manner at a rate of 1 bit per SCLK cycle.

Intel Corporation - FPGA University Program
March 2019

3

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

2.2 Timing and Signal Requirements

Each boards ADC controller operates on a 16-cycle operational frame, as shown in Figure 4. The user is required to
provide the SCLK, C S, and DIN signals to the ADC, and to capture the DOUT signal as it is transmitted.

addr2 addr1 addr0

data9 data8 data7 data6 data5 data4 data3 data2 data1 data0data11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data10

SCLK

CS

DIN

DOUT

Figure 4. Timing requirements for the ADC

The DOUT signal provides the 12-bit converted value of the selected channel. On power-up, channel 0 is selected
by default, while subsequent reads will use the address provided in the previous operational frame. The data bits are
transmitted in descending order, such that the highest-order bit is delivered first. It is captured by the user on the
rising edge of SCLK.

The DIN signal is used to select the channel to be converted in the following frame. It is delivered in descend-
ing order, and is captured by the ADC on the positive edges of SCLK. In order to avoid potential race conditions, the
user should generate DIN on the negative edges of SCLK.

C S should be lowered on the first falling edge of SCLK, and raised on the last rising edge of an operational frame.
See Table 1 for the timing requirements for each board.

2.3 Analog Circuit Requirements

All analog inputs are referenced against a Vdd signal hardwired to the ADC. Therefore, to avoid damaging the
boards, any voltages provided to the ADC should not exceed this maximum voltage pins should not exceed the
maximum voltages listed in Table 1. If the analog circuitry is powered by a supply voltage greater than the maximum
voltage, voltage dividers should be used to limit the maximum output voltage to the maximum. Example analog
circuits for measuring a variety of stimuli are shown in Figure 5. The resistance values given are approximate; all
analog signals should be measured before being connected to the ADC.

4 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

Amp3.3 V

(a) Photoresistor (b) SPST Switch (c) Microphone

5k 10k

100k

Figure 5. Examples of analog circuits using a variety of sensors.

Figure 5a includes a photoresistor. A photoresistor can be used to detect sources of light by changing resistance
based upon the amount of light that strikes its surface. In this configuration, a high output voltage represents a bright
signal, and low output represents a dark one. This can be reversed by switching the Vdd and GND connections.

Figure 5b shows the usage of a simple switch. The output voltage is low when the switch is open, and high when the
switch is closed. As with the photoresistor, this can be changed by swapping the Vdd and GND connections.

Figure 5c utilizes a microphone. Since many basic microphones do not have a large enough signal amplitude to
be detected by the ADC, the output may require amplification. The resistor should be matched to the impedance of
the microphone.

When connecting analog circuits to the ADC, it it essential to connect the ground potential of the circuit to the
GND pin. This creates a common reference point for both the circuit and the board, so that voltages can be com-
pared accurately. You can find and use a GND pin on your board by consulting the board’s User Manual. For
example, you could use pin 10 of the 2x5 J15 ADC Controller header on the DE0-Nano-SoC and DE1- SoC boards,
or pin 26 of the 2x13 GPIO header on the DE0-Nano board. Figures 6 and 7 illustrate how an analog circuit should
be connected to the board.

Intel Corporation - FPGA University Program
March 2019

5

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

Figure 6. An analog circuit connected to the 2x5 ADC header on the DE10-Standard, DE10-Nano, DE0-Nano-
SoC or DE1-SoC.

3.3 V

GND

CH0

CH1

CH2 CH3

CH4

CH5

CH7 CH6

VDD

Figure 7. An analog circuit connected to the 2x13 GPIO header, shown from the underside of the DE0-Nano board.

The 2x13 GPIO should be on the right edge of the board.

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

3 The ADC Controller for DE-series Boards

The ADC Controller for DE-series Boards IP Core manages and controls the signals between the ADC and FPGA,
and provides the user with the converted values. The core is usable in both hardware-only and software-controlled
versions. It reads each of the input channels of the ADC in ascending order once per update cycle, storing the
acquired values locally. Once the update cycle is complete, the new values are available for access. It also provides
a number of customizations to the user to control its operation.

The ADC controller core defines the number of channels in use as a parameter, NUM_CH, which is set by the user
when the core is instantiated. Since the core operates by sampling all used channels in series, reducing the number
of used channels will reduce the total amount of time required to refresh the values.

The core also allows specification of the SCLK frequency. The user can enter a desired value in the allowed range
(See Table 1). Exact matching of the desired SCLK value is not guaranteed, as SCLK is derived as an integer factor
of the system clock. Typically, the mismatch will be less than a 5% difference between the desired and implemented
value.

3.1 Implementing the ADC Controller with the Platform Designer Tool

3.1.1 The Software-Controlled ADC Core

For complex systems where a processor and software control is desired, the ADC controller can be included as a
Platform Designer component compatible with a Nios® II or ARM* processor. For information on designing systems
in Platform Designer that include Nios II and/or ARM, refer to the Introduction to the Intel Platform Designer
Integration Tool and Introduction to the Intel Nios II Soft Processor or Introduction to the ARM A9 Processor
tutorials.

The ADC Controller provides the processor with eight memory-mapped registers for reading and two registers for
writing, as detailed in Table 1. The Controller is operated by reading from and writing to these registers.

Table 2. DE-Series ADC Controller register map
Offset in bytes Register name Read/Write Purpose

0
CH_0 R Converted value of channel 0

Update W Update the converted values

4
CH_1 R Converted value of channel 1

Auto-Update W Enables or disables auto-updating
8 CH_2 R Converted value of channel 2
12 CH_3 R Converted value of channel 3
16 CH_4 R Converted value of channel 4
20 CH_5 R Converted value of channel 5
24 CH_6 R Converted value of channel 6
28 CH_7 R Converted value of channel 7

For reading, each of the eight registers corresponds to one of the eight input channels to the ADC. After the ADC
converts the desired number of channels, the converted values will be available in these registers. If a channel is not
in use, its corresponding register will contain zeroes. In each channel register, the low 12 bits (bits 11 to 0) are the

Intel Corporation - FPGA University Program
March 2019

7

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

value of the analog signal. Bit 15 in each register is a refresh bit, which is used in Auto-update mode. The bit is set
to 1 when a corresponding channel is refreshed, and set to 0 when read. The remaining bits (31 to 16 and 14 to 12)
are unused.

The Update register is used to initiate a conversion operation. Performing a write to this register will update all
channels in use, with the new values becoming available once the entire conversion process has finished. If reads to
the channel registers are attempted while a conversion is taking place, then the wait_request signal will be raised,
causing the processor to stall until the update has finished.

The Auto-Update register is initially loaded with a zero value. The auto-update allows the system to automatically
begin a second update cycle after the first finishes. As result, channel values can be accessed during an update
cycle, and it is user’s responsibility to ensure the values used are up-to-date. Writing a ‘1’ to this register enables
auto-update, while writing a ‘0’ disables it.

3.1.2 Using the ADC Controller Core

To demonstrate the use of the ADC Controller, we will implement a system using the Platform Designer tool for the
DE0-Nano-SoC board. The system will be controlled by a processor and software, and the converted values from the
ADC will be displayed on the board’s LEDs. Although we will use the DE0-Nano-SoC for demonstration purposes,
similar steps can be used for other DE-series boards.

To make a new system with the ADC Controller, create a new project in Quartus Prime named adc_demo. The
top-level module should also be adc_demo. Specify the device as the Cyclone® VE chip 5CSEMA4U23C6, and
complete the project creation. Then, open the Platform Designer tool.

The system will have four main components: the ADC Controller, a Nios II processor, on-chip memory, and LEDs
to display the read values. The block diagram of the system is shown in Figure 8.

The system will use a 100 MHz system clock instead of CLOCK_50. First remove, the default clock source that is
included in the new Platform Designer project. Next, from University Program, select the System and SDRAM
Clocks for DE-series Boards from the Clock list. Change the Desired System clock to “100.0” MHz and the
DE-Series Board to DE0-Nano-SoC, then select Finish. Export the clock input as clk and the reset input as reset.
Use sys_clk as the system clock and reset_source as the system reset.

From the Processors and Peripherals, select the Nios II (Classic) Processor from the Embedded Processors
list. Select Nios II/e as the processor type, and add it to the system. Rename this module to cpu, and connect it to
the clock and reset signals.

Next add the on-chip memory by selecting On-Chip Memory (RAM or ROM) from the Basic Functions > On
Chip Memory component list. Specify “8192” as the total memory size and select Finish to add it to the sys-
tem. Connect the clock and reset signals to the memory, and connect the memory to the data_master and instruc-
tion_master sources of the Nios II processor. Rename the memory to onchip_mem. Edit the Nios II processor to
specify onchip_mem as the reset and exception vector memories.

Use a PIO (Parallel I/O) component to connect the system to the LEDs. Select Processors and Peripherals >
Peripherals and choose the PIO (Parallel I/O) component. Specify a width of 8, and select Output as the direction.
Rename the component to LEDs. Connect it to the clock and reset sources, the Nios II data_master, and export the

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

LTC2308

LTC2308

Figure 8. A simple Nios II system with the ADC Controller.

conduit as leds.

Lastly, include the ADC controller in the system by selecting University Program > Generic IO > ADC Controller
for DE-Series Boards from the component list. Select the DE0-Nano-SoC board and specify “2” as the number of
channels used, then select Finish to add it to the system. After adding the ADC controller to your system, rename
the component to ADC. Connect the clk, reset and adc_slave signals to the clock source, clock reset and data_master

Intel Corporation - FPGA University Program
March 2019

9

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

Figure 9. The ADC Controller component window.

sources, and export the external_interface signal as adc. Note: the ADC controller for the DE-10 Lite board does
not contain an external_interface signal, as the connections are internal to the FPGA.

Assign the component addresses by selecting System > Assign Base Addresses. The system should match
the one presented in Figure 10. Take note of the addresses assigned to the LEDs and the ADC controller, as these
will be needed later. Save the system as nios_system and generate it using Generate > Generate HDL....

After generating the system, it is necessary to create a top-level module for the system. Create a new verilog file
and copy the code from Figure 11 into it, or use the one provided in the “design files” subdirectory. Save this file as
adc_system.v. Add the top level file just created and the synthesis/nios_system.qip file to project file list. Import the
DE0-Nano-SoC Pin Assignments file and compile the project.

To use the ADC in a C program, declare a volatile int * for each peripheral, such as the ADC or LEDs. Assign
this pointer the base address of the component as it was defined in Platform Designer. To read from or write to the
component, use the dereference operator (*) to read or write values as appropriate. For peripherals with multiple
registers, such as the ADC controller, treat the peripheral as an array of integer-sized values.

Example C code for operating the ADC is shown in Figure 12, and is available for use in the “design files” sub-
directory. This code uses the first two channels of the ADC, alternating between them every 500,000 reads. The
highest 8 bits for the channel will be displayed on the LEDs.

Use the Intel FPGA Monitor Program to download the system and C program to the FPGA chip. Users unfamiliar
with the Intel FPGA Monitor Program should consult the Intel FPGA Monitor Program Tutorial for a detailed
description of the program’s features. To begin, create a new project using a custom system. Use the .sopcinfo
generated by Platform Designer and the .sof file generated by Quartus to define the system. Next, choose C Program

10 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

Figure 10. The system in Platform Designer with the ADC Controller.

module adc_demo (CLOCK_50, KEY, LED, ADC_SCLK,
ADC_CONVST, ADC_SDO, ADC_SDI);

input CLOCK_50;
input [0:0] KEY;
output [7:0] LED;
input ADC_SDO;
output ADC_SCLK, ADC_CONVST, ADC_SDI;
nios_system NIOS (

.clk_clk (CLOCK_50),

.reset_reset (!KEY[0]),

.leds_export (LED),

.adc_sclk (ADC_SCLK),

.adc_cs_n (ADC_CONVST),

.adc_dout (ADC_SDO),

.adc_din (ADC_SDI)
);
endmodule

Figure 11. Example top-level module for a project using the ADC Controller.

as the program type, and include the relevant C file. Leave all other settings unchanged, complete project creation
and compile the program. After compilation is finished, load the program and select Actions > Continue to run it.

Intel Corporation - FPGA University Program
March 2019

11

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

/* Replace these addresses with the base addresses of the ADC and LEDs in

* your Platform Designer project */
#define ADC_ADDR 0x00005000
#define LED_ADDR 0x00005020

int main (void){
volatile int * adc = (int*)(ADC_ADDR);
volatile int * led = (int*)(LED_ADDR);
unsigned int data;
int count;
int channel;
data = 0;
count = 0;
channel = 0;
while (1){

*(adc) = 0; //Start the ADC read
count += 1;
data = *(adc+channel); //Get the value of the selected channel
data = data/16; //Ignore the lowest 4 bits

*(led) = data; //Display the value on the LEDs
if (count==500000){

count = 0;
channel = !channel;

}
}
return 0;

}

Figure 12. C code to operate the ADC.

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

3.2 Using the ADC Controller with HAL

Alternatively, it is possible to use a processor and the various peripherals without creating a custom system. In this
case, it is advantageous to use the Hardware Abstraction Layer or HAL. The HAL allows the use of task-specific
function calls for accessing the peripheral, instead of accessing the peripheral directly. Additional details on the HAL
can be found in the Using HAL Device Drivers with the Intel FPGA Monitor Program tutorial. The documentation
for all University Program HAL devices can be found in the [Quartus Directory]/ip/University_Program directory.

The HAL Driver for the ADC offers five functions for accessing and controlling the ADC. To use these functions,
the program must include the statement:
#include "altera_up_avalon_adc.h"

The first step when using the ADC with HAL is to create a device pointer to the ADC. HAL device drivers fea-
ture a different variable type for each device; for the ADC controller, the type “alt_up_adc_dev” is used. After
creating the pointer, the value is assigned using the alt_up_adc_open_dev (...) function. This function takes in the
name of the device and locates it within the system, and returns a pointer to the adc controller. If the default system
is used, the string “/dev/ADC” should be used; otherwise, replace ADC with the name of the component as defined
in the Platform Designer system. The result of this function should be assigned to the device pointer created for the
ADC.

Once initialized, the other four functions can be used as desired. Definition prototypes and detailed descriptions
for the HAL functions are shown in Figure 13. An alternative version of the C example presented above - now using
the HAL - is shown in Figure 14, and in the “design files” subdirectory.

Having completed the code, load the program into the FPGA using the Intel FPGA Monitor Program. As in the
previous section, a custom system can be used, though the use of HAL does allow the use of the DE0-Nano-SoC
Computer instead. Additionally, instead of specifying the program type as C Program, choose Program with De-
vice Driver Support. This option will include any relevant HAL drivers automatically during compilation, but the
program will require significantly more memory. If the program is too large to fit in the on-chip memory, consider
implementing an SDRAM module to provide additional memory for the system.

Compile and load the system and program to test the device.

Intel Corporation - FPGA University Program
March 2019

13

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

alt_up_de0_nano_adc_open_dev
Prototype: alt_up_adc_dev* alt_up_adc_open_dev(const char

*name)
Include: <altera_up_avalon_adc.h>
Parameters: name – the ADC Controller name. For example, if the ADC controller

name in Platform Designer is "ADC", then name should be "/dev/ADC"
Returns: The corresponding device structure, or NULL if the device is not found.
Description: Open the ADC controller device specified by name .

alt_up_adc_read
Prototype: unsigned int alt_up_adc_read (alt_up_adc_dev

*adc, unsigned channel)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .

channel – the channel to be read, from 0 to 7.
Returns: data – The converted value from the desired channel.
Description: Read from a channel of the ADC.

alt_up__adc_update
Prototype: void alt_up__adc_update(alt_up_adc_dev *adc)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .
Description: Trigger the controller to convert all channels and store the values.

alt_up_adc_auto_enable
Prototype: void alt_up_adc_auto_enable(alt_up_adc_dev

*adc)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .
Description: Enable automatic converting of channels.

alt_up_adc_auto_disable
Prototype: void alt_up_adc_auto_disable(alt_up_adc_dev

*adc)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .
Description: Disable automatic converting of channels.

Figure 13. HAL functions for the ADC controller.

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

#include "altera_up_avalon_parallel_port.h"
#include "altera_up_avalon_adc.h"
int main (void){

alt_up_parallel_port_dev * led;
alt_up_adc_dev * adc;
unsigned int data;
int count;
int channel;
data = 0;
count = 0;
channel = 0;

led =alt_up_parallel_port_open_dev ("/dev/Green_LEDs");
adc = alt_up_adc_open_dev ("/dev/ADC");

while (led!=NULL&&adc!=NULL){
alt_up_adc_update (adc);
count += 1;
data = alt_up_adc_read (adc, channel);
data = data / 16;
alt_up_parallel_port_write_data (led, data);
if (count==500000){

count = 0;
channel = !channel;

}
}
return 0;

}

Figure 14. C code using HAL to operate the ADC.

Intel Corporation - FPGA University Program
March 2019

15

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

3.3 Using the ADC Controller with IP Catalog

To include the ADC controller in a hardware-based project, use the IP Catalog. Basic information on using the IP
Catalog can be found in the Using the Library of Parameterized Modules (LPM) tutorial. The IP Catalog version of
the controller allows access to between two and eight channels, with channel values updating automatically.

To instantiate the controller, open Tools > IP Catalog. Select University Program > Generic IO > ADC Con-
troller for DE-series boards. The window in Figure 15 will appear. Set the values to match the figure and press
OK. The window in Figure 16 will appear. Set the parameters of the ADC controller to those listed in the figure
and then press Generate HDL... which will cause the window in Figure 17 to appear. Press Generate to generate
the system. The window in Figure 18 may appear, if it does press Close after the system saves to continue the
generation of HDL.

Figure 15. Creating a new IP variation of the ADC controller.

16 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

Figure 16. Configuring the ADC controller in the IP Catalog.

Intel Corporation - FPGA University Program
March 2019

17

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

Figure 17. Generating the ADC controller.

Figure 18. Saving the Platform Designer system for IP variation.

After finishing generating the system, add the IP core to the Quartus project by including the .qip file under
<generation_directory>/synthesis folder. Once generation is complete, create a top-level file using the verilog code
in Figure 19, or use the file adc_demo_mega.v in the “design files” directory. In this example, the Switches on the
board are used to select the channel to display, from 0 to 7. The eight highest bits of the chosen channel are displayed
on the LEDs.

18 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

module adc_demo_mega (CLOCK_50, KEY, SW, LED, ADC_SCLK,
ADC_CONVST, ADC_SDO, ADC_SDI);

input CLOCK_50;
input [0:0] KEY;
input [2:0] SW;
output [7:0] LED;

input ADC_SDO;
output ADC_SCLK, ADC_CONVST, ADC_SDI;

wire [11:0] values [7:0];
assign LED = values [SW] [11:4];

adc_control ADC (
.CLOCK (CLOCK_50),
.RESET (!KEY[0]),
.ADC_SCLK (ADC_SCLK),
.ADC_CS_N (ADC_CONVST),
.ADC_DOUT (ADC_SDO),
.ADC_DIN (ADC_SDI),
.CH0 (values[0]),
.CH1 (values[1]),
.CH2 (values[2]),
.CH3 (values[3]),
.CH4 (values[4]),
.CH5 (values[5]),
.CH6 (values[6]),
.CH7 (values[7])

);
endmodule

Figure 19. Example top-level module for a project using the ADC Controller with IP Catalog.

Import the pin settings file corresponding to your board; it can be found on the Intel FPGA University program
website. Open the assignment editor and delete the entry for Current Strength as shown in Figure 20; this must be
done when compiling projects containing the ADC controller plugin. Compile the project and download it to the
board.

Figure 20. Modifying Assignment Editor Entry for Current Strength

Intel Corporation - FPGA University Program
March 2019

19

https://www.altera.com/support/training/university/overview.html

USING THE DE-SERIES ADC CONTROLLER For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

20 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Background
	2.1 ADC Signals
	2.2 Timing and Signal Requirements
	2.3 Analog Circuit Requirements

	3 The ADC Controller for DE-series Boards
	3.1 Implementing the ADC Controller with the Platform Designer Tool
	3.1.1 The Software-Controlled ADC Core
	3.1.2 Using the ADC Controller Core

	3.2 Using the ADC Controller with HAL
	3.3 Using the ADC Controller with IP Catalog

