
Using Intel FPGA SDK for OpenCL™ on
DE-Series Boards

For Quartus® Prime 18.1

1 Introduction

This tutorial provides a brief introduction to OpenCL™ and the Intel® FPGA SDK for OpenCL, and describes how
to compile and execute OpenCL applications that target SoC-based DE-series boards such as the DE10-Standard,
DE10-Nano, and DE1-SoC.

Contents:

• Overview of OpenCL

• Overview of Intel FPGA SDK for OpenCL

• Compiling a Sample OpenCL Application

• Executing an OpenCL Application on DE-Series Boards

Requirements:

• Familiarity with using Linux* on DE-series boards, which can be achieved by reading the tutorial Using Linux
on DE-Series Boards

Intel Corporation - FPGA University Program
March 2019

1

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

2 What is OpenCL™?

OpenCL is a C-based programming language designed for writing applications that run on heterogeneous compute
platforms. These platforms generally consist of different compute devices such as CPUs, GPUs, and FPGAs. Tra-
ditionally, each of these devices has had its own methods for programming. As an example, a developer might have
had to write C code for the CPU, OpenGL code for the GPU, and Verilog code for the FPGA. In contrast, a developer
can use OpenCL to create a single application that executes across all of the devices. This makes it easier to extract
performance out of heterogeneous systems, using each device’s unique strengths to speed up corresponding portions
of the application.

OpenCL has a number of key features that make it suited for programming heterogeneous systems. First, OpenCL
provides an abstraction layer for programming the devices in the system. This means that device-specific details
are hidden to the developer which makes writing code easier, especially if the developer does not have a deep
understanding of the devices. The abstraction also means their application code is not specific to certain devices,
architectures, or vendors, leaving them free to migrate their application to newer platforms. Second, OpenCL allows
developers to specify parallelism in in fine detail. As a typical heterogeneous system contains parallel accelerators
such as GPUs and FPGAs, it is important to be able to write parallelized applications that make effective use of these
devices.

An OpenCL application is split into two parts, the host program and the kernel(s). The host program is executed
on the CPU of the system, and can perform any functions or computations as if it were a regular C program. In
addition, an OpenCL host program is able to launch one or more kernels in order to speed up computation. A kernel
is a special function written in OpenCL C that performs some user-defined computation. The kernel is executed
on an accelerator device such as an FPGA. Often, the kernel is designed to perform some computation that can
be executed in parallel - in order to effectively leverage the parallel nature of an accelerator like the FPGA. As an
example, consider matrix addition of two m x n matrices. Here, we could design the kernel to do a single addition
(between two corresponding matrix cells), allowing for any number of kernels between 1 to m x n to execute in
parallel. While a CPU would take m x n cycles to do this matrix addition, an FPGA containing many of these
kernels could compute the operation in parallel, thereby speeding up the application.

This tutorial is not intended to be a comprehensive guide to the OpenCL language nor the Intel FPGA SDK for
OpenCL. Instead, this tutorial provides the minimal information necessary to start using OpenCL on the DE-Series
boards. For more information about writing OpenCL and using the Intel FPGA SDK for OpenCL, please refer to
the documents listed below:

• Intel FPGA SDK for OpenCL Getting Started Guide

• Intel FPGA SDK for OpenCL Programming Guide

• Intel FPGA SDK for OpenCL Best Practices Guide

Note: This tutorial will use the DE10-Standard board as a reference, but the procedure is almost identical for other
DE-series boards.

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/documentation/mwh1391807309901.html
https://www.altera.com/documentation/mwh1391807516407.html
https://www.altera.com/documentation/mwh1391807965224.html
https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

3 Introduction to the Intel® FPGA SDK for OpenCL™

The Intel FPGA SDK for OpenCL can be used to compile OpenCL applications that target heterogeneous systems
containing Intel FPGA(s). Such a system contains a CPU, such as an x86 or ARM* processor, and one or more Intel
FPGAs. For x86-based systems, the FPGA typically resides on an FPGA accelerator board, which is connected to
the system through the PCIe interface. For SoC-FPGA systems, the FPGA is generally connected to the processor
through specialized bridges, as is the case with Intel SoC-FPGA devices found on DE-series Boards. The host
program of the OpenCL application executes on the CPU, and the kernels are placed into the FPGA and launched
on-demand by the host program.

The Intel FPGA SDK for OpenCL provides the tools required to allow the implementation of OpenCL applications
that target Intel FPGAs. Three main components comprise the SDK:

• The Intel Offline Compiler (AOC) which translates the OpenCL kernel code into hardware that can be pro-
grammed onto the FPGA.

• The host runtime which is a collection of libraries and drivers that allow the host program to communicate
with the kernel(s) in the FPGA.

• The AOCL utility which provides a set of commands to perform tasks such as downloading the kernel into the
FPGA and running diagnostics to check that OpenCL drivers have been initialized.

The developer uses the Intel FPGA SDK for OpenCL in conjunction with a standard C++ compiler to compile the
OpenCL application. Figure 1 shows the compilation and execution flow at a high level. The flow is described in
more detail below:

1. The developer writes their OpenCL application code, which consists of a host program written in C/C++, and
kernel(s) written in OpenCL C.

2. The developer compiles the OpenCL application:

(a) The host program is compiled via GCC or Visual Studio, linking in the Intel OpenCL host runtime
libraries. This creates the host program binary to be executed by the CPU.

(b) The kernel(s) are compiled via the AOC. This creates the Intel OpenCL Executable (.aocx) file, which
can be downloaded onto the FPGA.

3. The developer uses the AOCL utility to load the .aocx programming file onto the FPGA. The FPGA now
contains the kernel(s) that will be launched by the host program.

4. The OpenCL application is executed by running the host program. Throughout its execution, the host program
launches the FPGA kernels as needed.

Intel Corporation - FPGA University Program
March 2019

3

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 1. The Intel FPGA SDK for OpenCL Flow

3.1 Installing the Intel® FPGA SDK for OpenCL™

To install the Intel FPGA SDK for OpenCL on your host computer, follow the instructions below. The Intel FPGA
SDK for OpenCL also installs the required Intel Quartus® Prime software. You do not have to install Quartus Prime
software separately.

1. Go to http://dl.altera.com/opencl/.

2. Select either the PRO or STANDARD edition of the SDK depending on the device family that you wish
to target. To determine which version is appropriate for your device you can consult the table at https:
//dl.altera.com/devices/.

4 Intel Corporation - FPGA University Program
March 2019

http://dl.altera.com/opencl/
https://dl.altera.com/devices/
https://dl.altera.com/devices/
https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 2. Intel FPGA SDK for OpenCL Download

3. Download the Windows* SDK or the Linux SDK depending on your operating system. This will download a
large TAR file and may take a long time to complete.

4. Extract the contents of the TAR file.

5. Run the installer:

On Windows, double click the setup.bat file.

On Linux, open a terminal, cd to the extracted files, then run the command sudo ./setup.sh.

The installer GUI will appear, as shown in Figure 3.

6. Follow the instructions in the installer GUI to install the SDK. At the step shown in Figure 4, take note of the
directory where the SDK is being installed. The installer comes with support for a variety of FPGA device
families. To save disk space, you can choose to install only the device(s) that you you need as shown in
Figure 5.

Intel Corporation - FPGA University Program
March 2019

5

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 3. Quartus Installation

Figure 4. Quartus Installation - Selecting the Quartus Root Directory

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 5. Quartus Installation - Selecting FPGA Devices

7. Once the installation completes, the Intel FPGA SDK for OpenCL will reside in <quartus root>/hld/ where
<quartus root> is the directory you chose in Figure 4.

8. Before you can call SDK commands, you must set your operating system’s environment variables to point to
the new installation. You can do this as follows:

On Windows, open a CMD prompt and run the command <quartusroot>\hld\init_opencl.bat.

On Linux, open a terminal and run the command source <quartusroot>/hld/init_opencl.sh.

Note that the init_opencl script does not permanently set the environment variables, and must be run each
time you open a new CMD prompt or terminal.

9. Verify the installation and environment variables by checking the output of the command aocl version.
The command should produce a version number output similar to Figure 6.

Figure 6. Verifying Intel OpenCL SDK install

Intel Corporation - FPGA University Program
March 2019

7

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

For more instructions on installing the Intel FPGA SDK for OpenCL, please refer to the document Intel FPGA SDK
for OpenCL Getting Started Guide.

3.2 Installing the DE-Series Board Support Package

To compile OpenCL kernels for your DE-series board, you must install and use the corresponding board support
package (BSP). To install the BSP, follow these instructions:

1. Go to DE-series board section on Terasic’s website (https://www.terasic.com.tw/en/).

2. Go to the webpage for your board.

3. Go to the Resources tab and scroll down to find the BSP(Board Support Package) for Intel FPGA SDK
OpenCL for your board, as shown in Figure 7.

Figure 7. Terasic’s Board Support Package version and download

4. Download the OpenCL BSP and extract its contents to <quartusroot>/hld/board/. Figure 8 shows the result
of extracting the BSP contents for the DE10-Standard board to <quartusroot>/hld/board/.

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/documentation/mwh1391807309901.html
https://www.altera.com/documentation/mwh1391807309901.html
https://www.terasic.com.tw/en/
https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 8. Extracting the Board Support Package to the <quartusroot>/hld/board/ Directory

5. Create a new environment variable called AOCL_BOARD_PACKAGE_ROOT and set its value to
<quartusroot>/hld/board/<extracted-bsp-directory> (eg. C:/intelFPGA/18.1/hld/board/de10_standard). In
Linux you can set an environment variable by using the command export <environment variable
name>=<environment variable value> in a terminal. In Windows you can set an environment
variable by following the instructions in Section 6.

6. Ensure that the AOCL_BOARD_PACKAGE_ROOT points to a directory that contains a file named board_env.xml,
as shown in Figure 9.

Intel Corporation - FPGA University Program
March 2019

9

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 9. Downloaded Board Support Package directory

7. To test the board support package installation run the command aoc -list-boards in a Windows CMD
prompt or a Linux terminal. The output should list the BSP that you just added, as shown in Figure 10 for the
DE10-Standard.

Figure 10. Verifying Board Support Package install

10 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

For more instructions on installing board support, please refer to the Installing an FPGA Board section of the
document Intel SDK for OpenCL Getting Started Guide.

3.3 Setting up the Quartus and OpenCL SDK License File

NOTE: As of version 17.1, you no longer require a license to use the Intel FPGA SDK for OpenCL. For prior
versions, please refer to the instructions below. The INTELFPGAOCLSDKROOT variable in the instructions below
refers to the <quartusroot>/hld/ directory.

If you have a fixed license follow these steps:

1. If you have a fixed license, copy the license (.dat) file to your local disk. A suggested location would be
INTELFPGAOCLSDKROOT/licenses/ where you may have to create the licenses directory in the INTELFP-
GAOCLSDKROOT/ directory.

2. Add or append to the LM_LICENSE_FILE environment variable, the path to your license file:
<path_to_license_file>/<license_filename> (eg. INTELFPGAOCLSDKROOT/licenses/license.dat).

If you have a floating license follow these steps:

1. Obtain the the port number and host name from the network or system admin. Alternatively, the information
is in the license file line SERVER <hostname> <8 to 12 character host or NIC ID> <port>.
The license for the user is <port>@<hostname>. If the port is not listed in the license file, specify @<host-
name>.

2. Modify the license file to update the port number and host name.

3. Add or append to the LM_LICENSE_FILE environment variable, the path to your license file: <path_to_
license_file>\<license_filename> (eg. INTELFPGAOCLSDKROOT\licenses\license.
dat).

For more instructions on licensing the software, please refer to the Licensing the Software section of the document
Intel FPGA SDK for OpenCL Getting Started Guide.

Intel Corporation - FPGA University Program
March 2019

11

https://www.altera.com/documentation/mwh1391807309901.html
https://www.altera.com/documentation/mwh1391807309901.html
https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

4 Compiling an Example OpenCL™ Application (Vector Addition)

Figure 11. The Vector Addition OpenCL Application

In this section, we will compile the OpenCL Vector Addition Design Example application for a DE-series SoC
board. The source code for this design example can be downloaded at https://www.altera.com/support/support-
resources/design-examples/design-software/opencl/vector-addition.html. This application performs vector addition
of two vectors as shown in Figure 11. More precisely, the application does the following:

1. The host program populates two arrays of equal length with randomized numbers.

2. The host program computes the sums in software, using the CPU.

3. The kernel is used to compute the same additions again, using the FPGA.

4. The host program compares the results from the kernel to those that resulted from using the CPU. If the results
are identical, the host program outputs the text "Verification: PASS" to indicate success.

4.1 Compiling the Kernel

We will first compile the kernel whose source code is located at /vector_add/device/vector_add.cl. Compiling the
kernel requires that the Intel FPGA SDK for OpenCL has been properly installed and configured, following the
instructions in Sections 3.1 and 3.2. You can compile the kernel by following the steps below:

1. Extract the contents of the exm_opencl_vector_add_arm32_<version>.tgz file to a directory of your choice.

2. In the commandline, navigate to the /vector_add/ directory.

3. Compile the kernel by running the command (this can take some time): aoc device/vector_add.cl -o bin/vec-
tor_add.aocx -board=<target_board> Where target_board is the board you installed in Section 3.2. The
available boards can be list by running the following command: aoc -list-boards

4. The resulting Intel OpenCL Executable file vector_add.aocx is placed in the /vector_add/bin/ directory.

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/support-resources/design-examples/design-software/opencl/vector-addition.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/vector-addition.html
https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

4.2 Compiling the Host Program

We will now compile the host program. Since the program will run on the ARM processor of the DE-series board,
we must compile the host program code into an ARM binary. To do this, we will use the GNU toolchain included in
the Linux distribution released for the DE-series board. This compilation process is referred to native compilation
since we are compiling the code on the same system that will run the binary. This is in contrast to cross-compiliation
which would be the process of compiling the binary on a non-ARM system (such as your x86 desktop or laptop)
and then transferring the binary to the board to run it. To natively compile the host program, follow the instructions
below:

1. Boot Linux on your board following the instructions in the tutorial Using Linux on the DE-Series Boards.

2. Establish a commandline interface to the board either through USB-UART or SSH.

3. In the commandline, run the command source /home/root/OpenCL/init_opencl.sh to config-
ure the necessary environment variables.

4. Transfer the contents of the exm_opencl_vector_add_arm32_<version>.tgz file to a location of your choice on
the board. For instructions on transferring files to the board’s Linux file system, refer to Section Transferring
Files to/from the Host Computer in the tutorial Using Linux on the DE-Series Boards.

5. In the commandline, navigate to the /vector_add/ directory.

6. Compile the host program by running make.

7. The resulting host program binary vector_add is placed in the /vector_add/bin/ directory.

5 Running OpenCL™ Applications on DE-Series boards

OpenCL applications targeting DE-series SoC boards must run on top of the Linux operating system as they rely on
Linux drivers that facilitate communication between the host program and the OpenCL kernel(s) inside the FPGA.
This means that before you can run an OpenCL application, you must boot Linux on the board. The tutorial Using
Linux on the DE-Series Boards describes the process of booting Linux on DE-Series boards. Note that you must use
a Linux distribution that contains support for OpenCL, such as the one used in the tutorial. Once you have booted
up Linux, you can proceed to the following section.

5.1 Running the Vector Addition OpenCL™ Application

This section describes the steps for executing the Vector Addition sample OpenCL program included with the DE-
series Linux distribution. The commands shown are to be run in a commandline interface to the board, through a
USB-UART or SSH connection. For instructions on establishing a commandline interface to the board, refer to the
tutorial Using Linux on the DE-Series Boards.

To execute an OpenCL application, we must first run a script to setup the environment and load necessary OpenCL
drivers. To do this, you can use the following command:

Intel Corporation - FPGA University Program
March 2019

13

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

source /home/root/OpenCL/init_opencl.sh

Once we have executed the script, we can run the vector addition OpenCL application. For your convenience,
the application comes preloaded in the Linux image. You can find the files vector_add and vector_add.aocx in
/home/root/OpenCL/OpenCL_Examples/vector_add/. Alternatively, if you compiled your own host program binary
and aocx in Section 4, you can use them instead. To run the application, follow the instructions below:

1. Navigate to the directory:

cd /home/root/OpenCL/OpenCL_Examples/vector_add

2. Program the FPGA with the kernel:

aocl program /dev/acl0 vector_add.aocx

3. Execute the host program:

./vector_add

After running the commands listed above, you should see output similar to what is shown in Figure 12. As shown
in the figure, the host program executes, launching the kernel in the process. The host program displays the time
taken in total as well as how much of the time was taken by the kernel. Finally, the host program compares the
sums computed by itself to the sums computed by the kernel in the FPGA. If the sums match, the program outputs
"Verification: PASS".

Figure 12. Executing the vector addition application on the DE10-Nano board.

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

6 Appendix A

6.1 Adding and Editing Environment Variables in Windows*

To add or edit environment variables first open the system control panel and navigate to System > Advanced
System Settings to open the dialog window in Figure 13.

Figure 13. Advanced System Settings

From this dialog click Environment Variables... to open the dialog in Figure 14.

Intel Corporation - FPGA University Program
March 2019

15

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 14. System Environment Variables

To edit the PATH environment variable, select the Path variable and click Edit to open the dialog in Figure 15. From
here you can add and remove paths.

16 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Figure 15. ’Path’ System Environment Variable

To add environment variables, click New... in Figure 14 to open the dialog in Figure 16. From here you can define a
new environment variable.

Figure 16. New System Environment Variable

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Intel Corporation - FPGA University Program
March 2019

17

https://www.altera.com/support/training/university/overview.html


USING INTEL FPGA SDK FOR OPENCL™ ON DE-SERIES BOARDS For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

18 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 What is OpenCL™?
	3 Introduction to the Intel® FPGA SDK for OpenCL™
	3.1 Installing the Intel® FPGA SDK for OpenCL™
	3.2 Installing the DE-Series Board Support Package
	3.3 Setting up the Quartus and OpenCL SDK License File

	4 Compiling an Example OpenCL™ Application (Vector Addition)
	4.1 Compiling the Kernel
	4.2 Compiling the Host Program

	5 Running OpenCL™ Applications on DE-Series boards
	5.1 Running the Vector Addition OpenCL™ Application

	6 Appendix A
	6.1 Adding and Editing Environment Variables in Windows*


