
Accessing HPS Devices from the FPGA

For Quartus® Prime 18.1

1 Introduction

This document describes how to connect a bus-mastering device in the FPGA to slave devices in the Hard Processor
System (HPS) in Intel® SoC FPGA devices. This allows masters on the FPGA to use HPS resources such as USB,
ethernet, SD* card, and more.

Contents:

• HPS Devices Overview

Built-In Devices

Peripheral Pins and External Devices

Allowing Non-Secure Access to Devices

• Accessing the HPS Interconnect from the FPGA

Connecting an FPGA Master to the HPS Interconnect

Enabling the FPGA-to-HPS Bridge

The Address Span Extender

• Accessing HPS Peripheral Pins from the FPGA using LoanIO

Using the LoanIO Interface in Platform Designer

Configuring Pin Multiplexing for LoanIO

Intel Corporation - FPGA University Program
March 2019

1

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

2 HPS Devices Overview

2.1 Built-In Devices

Table 1 lists the devices that are built into the HPS. These devices provide memory-mapped interfaces which are
mapped to addresses within the HPS interconnect’s 32-bit (4GB) address space. Any master device connected to
the interconnect (such as one that is instantiated in the FPGA) can read and write these interfaces at their respective
addresses. For more details about these devices, refer to the document Cyclone® V Hard Processor System Technical
Reference Manual.

Table 1. HPS Devices
Device Interface Base Address

SD/MMC Controller sdmmc 0xFF704000
Quad SPI Flash Controller qspiregs 0xFF705000

qspidata 0xFFA00000
Ethernet Media Access Controller (EMAC) emac0 0xFF700000

emac1 0xFF702000
General Purpose I/O (GPIO) Controller gpio0 0xFF708000

gpio1 0xFF709000
gpio2 0xFF70A000

NAND Flash Controller nanddata 0xFF900000
nandregs 0xFFB80000

USB OTG Controller usb0 0xFFB00000
usb1 0xFFB40000

CAN Controller can0 0xFFC00000
can1 0xFFC001FF

UART Controller uart0 0xFFC02000
uart1 0xFFC03000

I2C Controller i2c0 0xFFC04000
i2c1 0xFFC05000
i2c2 0xFFC06000
i2c3 0xFFC07000

Timer sptimer0 0xFFC08000
sptimer1 0xFFC09000
osctimer0 0xFFD00000
osctimer1 0xFFD01000

SDRAM Controller sdr 0xFFC20000
DMA Controller dmanonsecure 0xFFE00000

dmasecure 0xFFE01000
SPI Controller spis0 0xFFE02000

spis1 0xFFE03000
spim0 0xFFF00000
spim1 0xFFF01000

On-Chip Memory ocram 0xFFFF0000

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

2.2 External Devices and Peripheral Pin Multiplexing

In addition to built-in devices, the HPS may be connected to external devices through the HPS’s peripheral pins.
These pins are physical connections that are wired to other devices on the FPGA board. Peripheral pin multiplexers
inside the HPS are then configured to route the signals from these pins to various endpoints. These multiplexers’
select signals are set by writing to Pin Mux Control registers, which are mapped in HPS address space. To determine
which peripheral pins have been connected to external devices, consult the board manufacturer’s schematics for the
board in question.

As an example of using the pin multiplexing, let’s examine the peripheral pin connection to the ADXL345 ac-
celerometer chip on the DE1-SoC board. The ADXL345 is operated through its I2C interface, and by consulting
the DE1-SoC board’s schematics we can see that the accelerometer’s I2C wires are connected to the HPS peripheral
pins trace_d6 and trace_d7. To determine which registers are responsible for controling these pins’ multiplexers, we
consult the Cyclone V HPS Memory Map document. Figure 1 shows an excerpt of the memory map, which shows
that registers GENERALIO7 and GENERALIO8 are responsible for pins trace_d6 and trace_d7 respectively.

Figure 1. Consulting the Cyclone V HPS Memory Map for the list of Pin Mux Control registers.

By clicking on one of the pin multiplexing registers, you can see a list of possible routings that can be made for
the corresponding pin. Figure 2 shows the list for the GENERALIO7 register (trace_d6 pin). Note that the routing
options for trace_d7 is similar to trace_d6.

Figure 2. Consulting the Cyclone V HPS Memory Map for details of the GENERALIO7 register.

Intel Corporation - FPGA University Program
March 2019

3

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

The possible routings for trace_d6 are described in more detail below:

1. GPIO/LoanIO number 55: A value of 0 routes the pin to the GPIO/LoanIO multiplexer, which in turn can
route this signal to either the GPIO controller or to the FPGA fabric as a LoanIO wire.

2. I2C0.SDA: A value of 1 routes the pin to SDA port of the I2C controller I2C0.

3. SPIS1.SS0: A value of 2 routes the pin to the SS0 port of the SPI Slave controller SPIS1.

4. TRACE.D6: A value of 3 routes the pin to the D6 port of the Trace controller.

Figure 3 provides a high-level view of the ADXL345’s signals, and the multiplexers involved in routing them. The
typical routing configuration is to connect the ADXL345’s I2C signals to the I2C0 I2C controller. This allows a
master to communicate with the ADXL345 chip via I2C0’s memory-mapped register interface. This means writing
‘1’ to GENERALIO7 and GENERALIO8, and ‘0’ to I2C0USEFPGA.

Cyclone V SoC

HPS

GPIO1

FPGA

I2C0
ADXL345 AI2C

...

B0
1

C 0
10

1

2,3

Pin Mux

GENERALIO7/8

GENERALIO7/8
0123

GENERALIO7/8
0123

G
PL

M
U

X5
5/

56

I2C0USEFPGA
0 1

...

G
PL

M
U

X
55

/5
6

I2C0

Cyclone V
HPS

...

...

...

GPIO1

FPGA

FPGA0
1

ADXL345

Figure 3. Routing the I2C signals from the accelerometer in a DE1-SoC board.

2.3 Allowing Non-Secure Access to Devices

The HPS interconnect contains a security feature that limits access to various devices so that only “secure” masters,
such as the ARM* Cortex* A9 processor, can access them. Because masters in the FPGA are considered non-secure,
a secure master must first configure the interconnect to allow non-secure access to a device before FPGA-side masters
can access it. This is done by writing to Security Register Group registers, which are part of the L3 GPV Registers. To
allow non-secure access to a device, a ‘1’ must be written to the device’s corresponding security bit. For example, to
allow non-secure access to I2C0’s register interface, you must write a ‘1’ to bit 2 of the l4sp register. Further details
about the Security Register Group registers can be found in the Cyclone V HPS Memory Map, as shown in Figure 4.

4 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

Figure 4. The L3 GPV Security Registers, seen in the Cyclone V HPS Memory Map.

3 Accessing the HPS Interconnect from the FPGA

3.1 Connecting an FPGA Master to the HPS Interconnect

An AXI or Avalon® bus-mastering device inside the FPGA can be connected to the HPS interconnect through the
FPGA-to-HPS bridge. This connection is made in the Platform Designer system integration tool, by connecting the
master device’s memory mapped master port to the Hard Processor System component’s AXI_Slave port named
f2h_axi_slave. Figure 5 shows an example of such connection in the Platform Designer GUI, where the master
device is an instantiation of the Nios® II soft processor.

Intel Corporation - FPGA University Program
March 2019

5

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

Figure 5. Connecting an FPGA-side master to the HPS interconnect.

3.2 Enabling the FPGA-to-HPS Bridge

Before FPGA-side masters can access the HPS interconnect, the FPGA-to-HPS bridge must first be enabled by
deasserting its reset bit in the brgmodrst. The brgmodrst register is located at address 0xFFD0501C in HPS address
space. Since FPGA-side masters cannot access HPS address space until the bridge is enabled, the resets must be
deasserted by a master inside the HPS. This is usually accomplished by running a baremetal program on the ARM
Cortex A9 processor to write a 0 to bit 2 of the brgmodrst register. After deasserting the bridge’s reset, the FPGA-side
master has access to the full 4GB address space through the FPGA-to-HPS bridge.

3.3 The Address Span Extender

The HPS interconnect has an address space that spans 4GB, which takes up the entirety of a 32-bit master’s ad-
dress range. This scenario was shown in Figure 5, where the f2h_axi_slave connection took up the entire 32-bit
(0x00000000 - 0xffffffff) address range of the Nios II processor. Such a connection would prevent the mas-
ter from addressing any other memory-mapped device. As a workaround to this limitation, you can use a standard
Platform Designer IP core called the Address Span Extender.

The Address Span Extender IP core provides a window into the address space of a slave. Figure 6 shows the use of
the Address Span Extender to provide a 16MB window into the top portion of the HPS interconnect’s memory range,
from 0xFF000000 to 0xFFFFFFFF. This window provides the Nios II processor access to all of the HPS’s built-in
devices listed in Section 2.1, and leaves the rest of the address range free for addressing other memory-mapped
devices. The size of the window, as well as the window’s offset from the base address of the slave can be configured
during the instantiation of the core. For further details regarding the Address Span Extender, refer to the Platform
Designer System Design Components section of the Quartus® Prime Handbook.

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

Figure 6. Connecting an FPGA-side master to the HPS interconnect via an address span extender.

4 Accessing HPS Peripheral Pins from the FPGA

This section describes how to connect HPS peripheral pins as input, output, or inout ports to user-defined HDL
modules in the FPGA.

4.1 Using the LoanIO Interface in Platform Designer

In Figure 3 you can see that the pin multiplexing can be configured to route the ADXL345 I2C pins to the FPGA
side, by setting GENERALIO7/8 to ’0’ and GPLMUX55/56 to ’0’. When the multiplexing is configured in such
a way, the pins can be accessed through the LOANIO port of the Hard Processor System component in Platform
Designer. In order to use the LOANIO port, you must first configure the HPS component in the Peripheral Pins tab
of the component wizard. Near the bottom of the tab, you will see a table of peripheral pins, as shown in Figure 7.
In the table, you must export the required pins to the LOANIO interface by clicking on the LOANIOXX button in the
corresponding row. Figure 7 shows this being done for the pins trace_d6 and trace_d7.

Intel Corporation - FPGA University Program
March 2019

7

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

Figure 7. Configuring the HPS Platform Designer Component to connect HPS peripheral pins to the LOANIO port.

Once the HPS component is configured, the HPS component will now have a conduit named h2f_loan_io, as shown
in Figure 8. To access this port in your HDL code, you must export it by double clicking the Double-click to export
text to the right of the h2f_loan_io conduit. This will result in three additional ports in the top-level module generated
by Platform Designer, as shown in Figure 9. These ports are as wide as the number of HPS peripheral pins that exist
in the chip. In the case of the DE1-SoC board, the ports are 67 bits wide corresponding to the 67 HPS peripheral
pins. In Figure 7, you can see that the two pins that we exported are sent to LOANIO55 and LOANIO56, meaning
that the two pins can be accessed at indices 55 and 56 in the three ports.

Figure 8. Exporting the HPS component’s LOANIO port.

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

Figure 9. The exported LOANIO port.

4.2 Configuring Pin Multiplexing for LoanIO

Section 4.1 described the FPGA-side configuration for using the LOANIO port. HPS-side configuration for using the
LOANIO port is done in a similar way as described in Section 2.2. The goal is to configure the pin multiplexers to
route the pins to the LOANIO port. First, the GENERALIO multiplexer corresponding to the pin must be configured
to ’0’ to route the pin to the GPIO/LOANIO interface. Then, the corresponding GPLMUX multiplexer must be
configured to ’0’, which routes the pin to the LOANIO port.

Intel Corporation - FPGA University Program
March 2019

9

https://www.altera.com/support/training/university/overview.html


ACCESSING HPS DEVICES FROM THE FPGA For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

10 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 HPS Devices Overview
	2.1 Built-In Devices
	2.2 External Devices and Peripheral Pin Multiplexing
	2.3 Allowing Non-Secure Access to Devices

	3 Accessing the HPS Interconnect from the FPGA
	3.1 Connecting an FPGA Master to the HPS Interconnect
	3.2 Enabling the FPGA-to-HPS Bridge
	3.3 The Address Span Extender

	4 Accessing HPS Peripheral Pins from the FPGA
	4.1 Using the LoanIO Interface in Platform Designer
	4.2 Configuring Pin Multiplexing for LoanIO


