
Laboratory Exercise 2
Accelerating Computer Vision Techniques

This exercise introduces you to accelerating computer vision techniques using the Intel FPGA SDK for
OpenCL.

The Canny Edge-detection Technique
In this exercise, we will implement a variation of the Canny edge detector, which is a widely-used edge-detection
scheme in computer vision applications. Figures 1 and 2 show a sample image that is provided as the input to a
Canny edge detector, as well as the resulting edge-detected output image.

The Canny edge-detection algorithm involves five stages which are applied to the input image in succession.
The details of these stages are given below. As well, we will see how the sample input image from Figure 1 is
transformed as it passes through each stage.

Figure 1: Original image. Figure 2: Edge-detected image.

1

Stage 1: Grayscale Conversion
Figure 3 shows the state of our sample image at the end of the grayscale conversion stage. This stage converts the
input 24-bit bitmap color image (8 bits each for red, green, and blue) into an 8-bit grayscale image. The grayscale
value at each pixel is calculated as the average of the three 8-bit color values of the original image.

Figure 3: The sample input image after the grayscale conversion stage.

Stage 2: Gaussian Smoothing
Figure 4 shows the state of our sample image at the end of the gaussian smoothing stage. In this stage, a gaussian
filter is used to smooth out the image, by modifying noisy pixels (pixels that are unlike their neighbouring pixels)
to be more like their neighbours. Shown below is the 5 x 5 gaussian filter operation that is applied to the image.
Note that the * denotes convolution, A is the original image, and B is the resulting filtered image. The effect of
this operation is that each pixel gets assigned the weighted average value of the 5 x 5 grid of pixels surrounding
each pixel.

B = 1/159

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

 ∗A

Figure 4: The sample input image after the gaussian smoothing stage.

2

Stage 3: Sobel Operator
Figure 5 shows the state of our sample image at the end of the sobel operator stage. This stage overwrites each
pixel with the overall intensity gradient at that pixel. To calculate the overall intensity gradient, the gradient is first
calculated in the horizontal (Cx) and vertical (Cy) directions across the pixel, using the matrices below:

Cx =

−1 0 1
−2 0 2
−1 0 1

 ∗B Cy =

−1 −2 −1
0 0 0
1 2 1

 ∗B
The magnitudes of the two gradients are then added to calculate the overall gradient intensity value for each pixel,
resulting in the image C:

C = 0.5|Cx|+ 0.5|Cy|

In image C, which is the final output of this stage, the edges of the original image are highlighted as brighter
pixels. Non-edges, which are areas with low intensity gradients, appear as darker pixels.

Figure 5: The sample input image after the sobel operator stage.

To illustrate the effect of the sobel operator, let us examine different image boundaries that may exist in an image
as shown in Figure 6. For each 3 x 3 image shown, we can use the sobel operator to calculate the intensity gradient
at the center pixel. Let us examine the vertical boundary example, where there is a boundary between darker pixels
on the left side of the image, and brighter pixels on the right side. In this example, |Cx| of the center pixel can be
calculated as |{-1*2 + 0*98 + 1*181} + {-2*1 + 0*94 + 2*178} + {-1*6 + 0*91 + 1*184}| = 711. In the vertical
direction, |Cy| for this pixel is calculated to be 7. The intensity gradient for this pixel is high in the horizontal
direction, and low in the vertical direction, which is to be expected along a vertical boundary. The total intensity
gradient for this pixel, is 0.5 ∗ 711 + 0.5 ∗ 7 = 359 which saturates the 8-bit grayscale channel to value 255. The
sobel operator would therefore detect this boundary as a strong edge, and the center pixel would become bright
with a value of 255.

3

2 98 181

1 94 178

6 91 184

Vertical Boundary

188 185 181

86 94 91

4 3 3

Horizontal Boundary

100 185 181

 5 94 178

 2 3 91

Diagonal Boundary

137 145 129

133 140 138

129 130 131

 Non-Boundary

Figure 6: Examples of boundaries in an image.

In the horizontal boundary case, we see that the vertical gradient is high (|Cy| = 726) and the horizontal gradient
is low (|Cx| = 2). For the diagonal boundary case, the gradient is high in both directions with |Cx| = 516 and |Cy|
= 552. Finally, for the non-boundary case, the gradients are low in both directions with |Cx| = 4 and |Cy| = 36.
As the gradients are low, the center pixel would become dark with a value of 0.5 ∗ 4 + 0.5 ∗ 36 = 20.

Stage 4: Non-Maximum Suppression
Figure 7 shows the state of our sample image at the end of the non-maximum suppression stage. This stage
aims to thin the thick and/or blurry edges that may have resulted from the sobel operator stage. Thick edges are
problematic as many applications of edge detection benefit from the edges being as thin as possible. For example,
to accurately calculate the surface area of an object, thin edges are desired as to not overlap with the surface. The
non-maximum suppression stage thins the edges by removing the weaker (non-maximum) pixels of each edge, and
keeping only the maxima. Figure 8 shows the effect of non-maximum suppression on a sample image containing
a blurry vertical line. Notice that the vertical line, which is originally three-pixels wide, becomes one-pixel wide.

Figure 7: The sample input image after the non-maximum suppression stage.

4

 0 41 134 45 0

 0 43 135 46 0

 0 35 136 41 0

 0 41 132 35 0

 0 44 131 41 0

 0 0 134 0 0

 0 0 135 0 0

 0 0 136 0 0

 0 0 132 0 0

 0 0 131 0 0

Non-maximum
Suppression

Figure 8: The effect of nonmaximum suppression on a blurred vertical line.

Stage 5: Hysteresis
Figure 9 shows the end result of the hysteresis stage. The goal of the hysteresis stage is to remove pixels that do
not belong to an edge and weak edges altogether. This stage uses two user-defined thresholds: the high threshold
and the low threshold. The hysteresis algorithm examines each pixel to determine whether:

1. the pixel exceeds the high threshold, or

2. the pixel exceeds the low threshold value and there exists at least one adjacent pixel (horizontally, vertically,
or diagonally) that exceeds the high threshold.

If at least one of the two criteria are met, the pixel is preserved. Otherwise, the pixel is removed by turning it
black.

Figure 9: The sample input image after the hysteresis stage.

5

Part I
Write a C++-language program that implements the five stages of the canny edge detector as described in the
preceding sections. Start with the skeleton code provided in /design_files/part1/, which contains functionality for
loading and storing 24-bit color BMP image files. Once a 24-bit color image is loaded into memory, your code
should transform the pixels according to the five stages, then store the resulting edge-detected image. The skeleton
also contains code that measures the runtime of your program, which we will use to compare with the OpenCL
version. Test your program on the sample BMP images provided in /design_files/

Part II
Before we proceed with implementing a Canny edge detector using OpenCL, let us devise an efficient memory
architecture for storing the pixel values as they undergo transformations at each Canny stage. Recall that you have
two types of memory at your disposal: global memory outside the FPGA, and local memories inside the FPGA.
The host program provides input data to the accelerator by placing it in global memory. Since global memory
accesses are slow, your accelerator should cache the required pixels into local memory before using them. The
question then, is how to configure the FPGA’s local memory resources to best cache the pixels.

To determine the best memory configuration, let us consider the pixel usage pattern for box operations. Note
that the Gaussian smoothing, Sobel operator, non-max suppression, and hysteresis stages of the detector are all
types of box operations, as they work on a box (or frame) of pixels to determine each output pixel. Figure 10
depicts a 3x3 box operation (such as the 3x3 sobel operation) on three adjacent pixels of a 10-pixel-wide image.
Notice that there is significant overlap (6 pixels) in the frames of successive operations.

0 1 3 6 82 4 5 7 9
1011 13 16 1812 1415 17 19
2021 23 26 2822 2425 27 29
3031 33 36 3832 3435 37 39

0 1 3 6 82 4 5 7 9
1011 1312

0 1 3 6 82 4 5 7 9
1011 13 16 1812 1415 17 19
2021 23 26 2822 2425 27 29
3031 33 36 3832 3435 37 39

Box Operation for Output 11 Box Operation for Output 12

0 1 3 6 82 4 5 7 9
1011 13 16 1812 1415 17 19
2021 23 26 2822 2425 27 29
3031 33 36 3832 3435 37 39

Box Operation for Output 13

Output Pixels

... ...

...

Figure 10: A 3x3 box operation on three adjacent pixels of a 10-pixel-wide image.

To take advantage of the overlap in successive frames of box operations, we will use the FPGA’s local memory
resources to construct the shift register design shown in Figure 11. The figure shows the shift register design for
a 3x3 box operation that works on 10-pixel wide images, but the idea can be extended for arbitrary box sizes and
image widths. Once a sufficient number of pixels have been loaded, the shift register provides a new 3x3 frame
for the box operation at every cycle by simply shifting in a new pixel and shifting out the oldest pixel which is no
longer be used.

in

out 0 1 3 6 82 4 5 7 9
1011 13 16 1812 1415 17 19
202122

1 3 6 82 4 5 7 9 10
11 13 16 1812 1415 17 1920
21 2322

Shift Register at Cycle X Shift Register at Cycle X+1

24

3 6 82 4 5 7 9 1011
13 16 1812 1415 17 192021
2322

Shift Register at Cycle X+2

in

out

Figure 11: The shift register for 3x3 box operations on 10-pixel wide images providing 3 frames over 3 cycles.

6

How many shift registers will you require for your canny edge detector? How large should each of these shift
registers be, given that your circuit works on images that are 720 pixels wide? How many pixels must be loaded
into each shift register before the corresponding box operation can start? Using such a shift register design requires
you to zero pad the input image before shifting in its pixels, to properly operate on the boundaries of the image.
Why is zero padding necessary, and what is the necessary padding size for a given box size?

Part III
Create an OpenCL application that implements the five stages of the canny edge detector. Use shift registers to
hold the pixels as they undergo the Canny stages, and apply the box operations on the pixels while they are in flight
through the shift registers. The shift registers should be the minimum length necessary to hold required pixels.
When operating in its steady state, your accelerator should have a throughput of one pixel per clock cycle. The
accelerator is considered to be in its steady state when its shift registers are full. For simplicity, do not zero pad
the boundaries of the input image and accept some error along the boundary edge pixels. Your application must
be able to operate on images that are 720 pixels wide with variable height. Start with the skeleton code provided
in /design_files/part3.

The shift-register design methodology requires the use of Intel FPGA SDK for OpenCL’s ability to infer shift
registers from your OpenCL code. This feature is described in Section Inferring a Shift Register of the document
Intel FPGA SDK for OpenCL Programming Guide.

Copyright c© Intel Corporation.

7

