
OPAE
Laboratory Exercise 1

Designing and Implementing an Intel AFU

This is an introductory exercise about heterogeneous computing using Intel technology. Figure 1 depicts a com-
puter that includes both an Intel® processor and a Field-Programmable Gate Array (FPGA). The FPGA is a
programmable logic device, which can be configured to implement whatever hardware circuit is needed for a par-
ticular application. In the computer, the main circuit board that houses the processor is connected to the FPGA
board via a PCI express (PCIe) port. In this introductory exercise we will show how to utilize the system in
Figure 1 as a heterogeneous computer in which both the processor and FPGA are used together to implement a
computation.

For the development of heterogeneous computing applications Intel provides a set of tools called the Intel Ac-
celeration Stack. It includes features for the development of both hardware and software components, as well
as various mechanisms for connecting these components together. To gain access to the Intel Acceleration Stack
we will make use of a cloud-based computing service called the Intel FPGA DevCloud®. The DevCloud offers
server-class computers that contain both a high-end Intel processor and an Intel Arria® 10 FPGA.

In various parts of this exercise you will need to execute commands within the DevCloud computing environment.
This means that you are expected to obtain a user account on this cloud service and to be familiar with its use.
Instructions for obtaining access to the Intel FPGA DevCloud, as well as an introduction to this computing envi-
ronment, can be found in the tutorial Introduction to the Intel FPGA DevCloud. This tutorial is provided by the
Intel FPGA Academic Program and is available for download along with this laboratory exercise.

Memory

PCIe

Main circuit board

Processor
Intel

FPGA Memory

FPGA circuit board

Computer

Figure 1: A heterogeneous computer.

1

In a heterogeneous computing application, Intel refers to the part of the system implemented in an FPGA as an
Accelerator Functional Unit (AFU). In this exercise you will design an AFU that provides a hardware component
which is used to solve part of a computation. To complete the design of this AFU you will need to have a good
grasp of the Verilog hardware description language (including some System Verilog extensions), which is used
in the design of the AFU hardware, and the C programming language, which is used to write software programs
for the processor that make use of the AFU. A good working knowledge of Linux is also desirable, as this is the
operating system deployed on the Intel FPGA DevCloud.

This exercise is organized into the following stages:

1. Design a hardware component that will form the main part of an AFU. At this stage the component will
be just a “normal” hardware module specified in Verilog code. This module should be developed using a
computer of your own choice (the DevCloud is not needed at this stage). We expect that you will compile
and test your Verilog code on your own computer using a simulation tool with a Verilog testbench.

2. Augment the hardware component described above to create an AFU. This step involves adding specific
ports and hardware registers that are required in the Verilog code for an AFU. The AFU’s registers will be
memory-mapped to a specific part of the processor’s address space. To compile the AFU we will make use
of the hardware development tools that are provided on the DevCloud.

3. Design software applications that utilize the AFU to perform computations along with a processor. The
software code will be compiled using the software development tools on the DevCloud.

Part I
Figure 2 provides a high-level block diagram of an AFU connected to a processor via a PCI Express (PCIe)
port. The part of the system implemented in the FPGA, highlighted in a blue color, is called the FPGA Interface
Manager (FIM). The FIM comprises two main components: the FPGA Interface Unit (FIU) and the AFU. The
purpose of the FIU is to act as a bridge between the PCIe interface and the AFU. As indicated in the figure the
FIU is connected to the AFU via a Protocol Port. This port can implement a number of communication protocols
based on the AFU designer’s preference. For this exercise we will use the Core Cache Interface protocol® (CCI-P),
which is discussed in Part II.

Processor
Intel

FPGA Interface Manager

P
ro

to
co

lFPGA
Interface

Unit

Register
Read/Write

Logic
Logic

Application

Accelerator Functional Unit

P
ro

to
co

l

PCIe

Figure 2: A block diagram.

2

The AFU in Figure 2 includes logic circuitry that facilitates access via the protocol (CCI-P) port to some registers.
This circuitry provides address decoding that allows the processor to read/write AFU registers using memory-
mapped I/O. Some of these registers have dedicated purposes that are required to be compatible with the Intel
Acceleration Stack. Other registers are part of the Application Logic in the AFU, which is the part of the AFU that
is used to perform computations along with the processor.

The purpose of the AFU in this exercise is to provide a hardware module that generates random integers. The
processor can configure the AFU so that it produces integers within a desired range, or to affect the sequence of
values that are generated. Whenever it is required for a computation, the processor can read a random integer
value from the AFU.

In this part of the exercise we will design only the Application Logic component of the AFU. The rest of the
AFU circuitry depicted in Figure 2 will be designed in Part II. To generate random integer the Application Logic
component uses a linear feedback shift register (LSFR).

Figure 3 depicts an LFSR that implements an n-bit register called Q. If the load input L = 1 then on an active
clock edge Q is loaded with the seed value S. But if L = 0 then the value of Q depends on the enable input E. If
E = 0 then Q cannot change. But if E = 1 then Q behaves as a shift register. The value that is shifted into each
flip-flop is dependent on the polynomial P .

For each bit-position, i, in Figure 3 let the data input of the flip-flop, Qi, be called Di. When the LFSR is acting as
a shift register, if Pi = 0 then Di = Qi+1. But if Pi = 1, then Di = Qi+1⊕Q0. This arrangement of exclusive-OR
gates in the LFSR allows it to produce a sequence of n-bit values that can be used as “random” integers. Note that
at position n− 1 the value of Di = 0 if Pn−1 = 0, and Di = Q0 if Pn−1 = 1.

In addition to the register Q shown in Figure 3 the Application Logic module includes an n−bit register for storing
the polynomial P , and a 2-bit control register, C. On reset C = C1C0 = 00 and the LFSR is in stopped mode.
Software running on the processor can write to the control register to use the LFSR in two different modes.

Setting the control register bit C1 = 1 enables the continuous mode of operation. While it is in this mode the
LFSR will generate a new “random” integer for each of its active clock edges. The LFSR can be stopped by
setting C = 00. Setting C1 = 0 and C0 = 1 puts the LFSR into step mode. In this mode the LFSR will be enabled
for only one of its clock cycles, so that it will generate exactly one new pseudo-random integer. The LFSR can be
placed back into the stopped mode by setting C = 00.

A software application may choose to put the LFSR into either continuous or step mode depending on the require-
ments of the computation being performed. To support these modes of operation the Application Logic module
has to be able to control the enable signal on the LFSR. This can be done by using a finite state machine (FSM)
controller, such as the one illustrated by the state diagram in Figure 4.

The control bits C1C0 are the inputs to the FSM, which produces an output z. This output is intended to be
connected directly to the enable input of the LFSR.

3

0 1
D

Q
0 1

D
Q

0 1
D

Q

E

P
n-
1

S
n-
1

Q
n-
1P
n-
2

0 1
0 1

0 1

L

S
n-
2

Q
n-
2

P
0

S
0

Q
0

C
lo
ck

Fi
gu

re
3:

A
co

nfi
gu

ra
bl

e
lin

ea
rf

ee
db

ac
k

sh
if

tr
eg

is
te

r.

4

X1

S1/1

S2/0

S0/0

1X

C1C0 = 00

01

00 00

X0

Reset

Figure 4: A finite state machine controller.

The FSM in Figure 4 starts in the state S0 and produces the output z = 0, which is indicated in the state diagram
as S0/0. As long as C1C0 = 00 the FSM remains in S0. Consider now the case where C1 changes to 1. On the
next active clock edge the FSM transitions to state S1, where it produces z = 1 to enable the LFSR. The FSM
remains in this state as long as C1 = 1, as indicated by the arrow labeled 1X (the value 1X represents both of
the cases C1C0 = 10 and C1C0 = 11). This scenario puts the LFSR in the continuous operating mode, where it
will generate a new random integer for each clock cycle. When C changes back to 00 the FSM transitions back
to the starting state S0. Next, consider the case when C1 = 0 but C0 changes to 1. On the next active clock edge
the FSM changes to state S1, setting z = 1, but it remains in this state for only one clock cycle. Following the
arrow labeled C1C0 = 01 the subsequent clock edge causes the FSM to move to state S2, where z = 0. As long
as C0 = 1 the FSM will remain in S2, and will return to S0 when C0 changes to 0. Since this scenario causes the
LFSR to generate exactly one new random integer, it implements the step operating mode.

A diagram of the Application Logic circuit is shown in Figure 5. It includes a two-bit address input A, an n-bit
data input D, and a write input W that represent the way this circuit will (in Part II) be included in an AFU and
connected to a processor. The address decoding, which is done using NOR gates, assigns the address A1A0 = 00
to the polynomial register, A1A0 = 01 to the LFSR register, and A1A0 = 10 to the control register. The AND
gates in the circuit ensure that each register can be loaded with the data D when its address is selected and W = 1.
When data is written to the LFSR it is loaded into the seed input S; the LFSR enable input E is controlled by the
z output of the FSM.

Perform the following steps to complete the design of the Application Logic module with Verilog code:

1. You should design your Verilog code on a “home” computer of your choosing. No tools on the DevCloud
are needed for this part of the exercise. To compile and simulate your Verilog code we assume that you have
access to a Verilog simulator, such as the ModelSim simulator. Although any modern Verilog simulator
can be used, the specific version that we refer to in the discussion below is called ModelSim-Intel FPGA
Starter Edition 2020.1. If needed, you can download and install a free version of this simulator from Intel’s
website (any recent version of the software can be used). An introduction to this simulator can be found in
the tutorial Using the ModelSim-Intel FPGA Simulator with Verilog Testbenches. This tutorial is available
on the Internet from the Intel FPGA Academic Program.

2. Make a new folder on your computer for this part of the exercise. Create a Verilog source-code file named
application.sv (the sv filename extension enables the use of System Verilog extensions), and write the code
for the circuit in Figure 5. A template for this Verilog code is shown in Figure 6.

5

n

Polynomial

n

A P

LFSRE

2

Control

FSM

z

Q

n

S

n

2

n

16 L

Q

Clock

D

W

E

E

A == 0x10

A == 0x12

A == 0x14

Figure 5: The application logic circuit.

module application (reset, clock, W, A, D, Q); // A configurable LFSR.
parameter n = 8;
input reset, clock, W;
input [15:0] A; // POLY_REG: 0x0010, LFSR_REG: 0x0012, CTRL_REG: 0x0014

input [n-1:0] D; // input data
output logic [n-1:0] Q; // LFSR output register
logic [1:0] Ctrl; // control register
logic [n-1:0] Poly; // polynomial register
logic [n-1:0] Mask, Next; // LFSR intermediate values
enum logic [1:0] {S0, S1, S2 } y, Y; // FSM, state and next state
logic z; // FSM output

always_ff @(posedge clock) // polynomial register
if (reset) // synchronous reset

Poly <= ’0;
else if (W && A == 16’h0010) // set the polynomial

Poly <= D;

// define the LFSR
// define the control register
// define the finite state machine

endmodule

Figure 6: A template for the Application Logic Verilog code.

6

3. Simulate your code to ensure that it works correctly. Example results produced by using ModelSim for
a correctly-designed circuit are given in Figures 7 and 8. For convenience of reference, the simulation is
based on a clock waveform with a 10 ns period. After resetting the circuit (each register has an active-high
synchronous reset capability), the simulation loads initial values into the three registers in the circuit. On
the clock edge at 15 ns in simulation time the polynomial register is loaded with the value 221. In the
subsequent clock cycle a seed value of 1 is loaded into the LFSR register. Then, the clock edge at 35 ns sets
the control register to C1C0 = 10, causing the FSM to enter the continuous operating mode in state S1 at
45 ns. Note that Q = P = 221 after the clock edge at 55 ns, which is the result of setting the seed to the
value 1. Over the next few clock cycles, as shown in Figure 7, the LFSR produces a sequence of “random”
integers. At 135 ns the simulation loads the control register with C1C0 = 00, which causes the FSM to
change back to state S0.

Figure 7: Using the LFSR in continuous mode.

Figure 8 continues the simulation results from Figure 7. At 155 ns the seed value in the LFSR is reinitialized
to 1. Then, in the next clock cycle the control register is set to C1C0 = 01, causing the FSM to enter step
mode by transitioning through state S1 to S2. The control register is set back to C1C0 = 00 at 185 ns, so that
the FSM moves back to state S0 at 195 ns. Finally, the step mode is used to generate a few more “random”
values as shown in the remainder of the simulation. The sequence of integers generated in Figures 7 and 8
are identical, because they are derived from the same seed and polynomial. Due to this behavior, an LFSR
is said to generate integers that are pseudo random.

The simulation results from Figures 7 and 8 are based on the Verilog testbench shown in Figure 9. This testbench
and the template code in Figure 6 are provided for your use along with this laboratory exercise.

7

Figure 8: Using the LFSR in step mode.

‘timescale 1ns / 1ps

module testbench ();
reg reset, clock, W; // declare design under test (DUT)

inputs
reg [15:0] A; // address
reg [7:0] D; // data
wire [7:0] Q; // declare DUT outputs

application U1 (reset, clock, W, A, D, Q); // instantiate the DUT

// define a 100 MHz clock waveform
always

#5 clock <= ~clock;

// assign inputs at various times
initial
begin

clock <= 1’b0;
reset <= 1’b1;
W <= 1’b0; A <= 2’bXX;
#10 reset <= 1’b0; // initialize the polynomial

A <= 16’h0010; D <= 221; W <= 1’b1;
#10 A <= 16’h0012; D <= 1’b1; // initialize the seed
#10 A <= 16’h0014; D <= 2’b10; // Set CTRL to continuous mode
#10 W <= 1’b0;
#90 D <= 0; W <= 1’b1; // set CTRL to stopped mode
#20 A <= 16’h0012; D <= 1; // re-initialize the seed
#10 A <= 16’h0014; D <= 8’b01; // set CTRL to step mode
#20 D <= 8’b00; // stop
#10 D <= 8’b01; // step
#20 D <= 8’b00; // stop
. . .

end // initial
endmodule

Figure 9: The simulation testbench.

8

Part II
In this part of the exercise we will augment the application logic circuit from Part I to create an AFU that can be
connected to a processor. This step will require the design of some additional Verilog code, as well as the use of a
number of hardware development tools that are provided on the DevCloud. As indicated in Figure 2 an AFU has
a protocol port and some logic for reading and writing registers based on this protocol. For this exercise we will
use the Core Cache Interface Protocol (CCI-P) that is provided by Intel. This protocol is part of the FIU interface
in Figure 2 and defines a signaling convention for connecting the processor and AFU.

Figure 10 provides a template for your AFU Verilog module. In Part a of the figure, Lines 1 and 2 include the
Verilog header files platform_if.vh and afu_json_info.vh. The first of these files defines some CCI-P data types
that are used in the code, and the second one specifies some key information about your AFU. We will discuss the
contents of afu_json_info.vh shortly.

Your AFU module is required to have the name afu, as given in the figure. Depending on its functionality, an
AFU may have different ports. In our case, in addition to clock and reset inputs, we require an input, called rx,
for receiving CCI-P data, and an output, named tx, for transmitting data. These rx and tx ports have special data
types, shown in Lines 7 and 8, that are defined via the header file platform_if.vh.

1 ‘include "platform_if.vh"
2 ‘include "afu_json_info.vh"
3
4 module afu (clock, reset, rx, tx);
5 input clock; // CCI-P clock
6 input reset; // CCI-P reset
7 input t_if_ccip_Rx rx; // receive channel
8 output t_if_ccip_Tx tx; // transmit channel
9

10 parameter n = 32;
11 logic [n-1:0] Q, Poly; // LFSR and polynomial registers
12 logic [1:0] Ctrl; // control register
13 logic [15:0] A; // Address
14 logic [n-1:0] D; // Data
15 logic W; // Write signal
16 . . . declare other signals
17
18 t_ccip_c0_ReqMmioHdr mmioHdr; // channel c0 header
19 assign mmioHdr = t_ccip_c0_ReqMmioHdr’(rx.c0.hdr);
20
21 assign A = mmioHdr.address; // rename address signal
22 assign D = rx.c0.data; // rename data signal
23 assign W = rx.c0.mmioWrValid; // rename write signal
24
25 always_ff @(posedge clock) // the polynomial register
26 if (reset)
27 Poly <= ’0;
28 else if (W && A == 16’h0010)
29 Poly <= D; // set the polynomial
30
31 . . . define the LFSR
32 . . . define the control register
33 . . . define the finite state machine

Figure 10: A template for the AFU Verilog code (Part a).

9

34 logic [127:0] afu_id = ‘AFU_ACCEL_UUID; // from afu_json_info.vh
35
36 always_ff @(posedge clock) begin // respond to memory-mapped I/O reads
37 if (reset) begin
38 tx.c1.hdr <= ’0;
39 tx.c1.valid <= ’0;
40 tx.c0.hdr <= ’0;
41 tx.c0.valid <= ’0;
42 tx.c2.hdr <= ’0;
43 tx.c2.mmioRdValid <= ’0;
44 end
45 else begin
46 // clear read response flag in case there was a response last cycle
47 tx.c2.mmioRdValid <= 0;
48
49 // serve MMIO read requests
50 if (rx.c0.mmioRdValid == 1’b1) begin
51 // copy TID, which host needs to map response to request
52 tx.c2.hdr.tid <= mmioHdr.tid;
53 // post response
54 tx.c2.mmioRdValid <= 1;
55
56 case (A)
57 // AFU header
58 16’h0000: tx.c2.data <= {
59 4’b0001, // Feature type = AFU
60 8’b0, // reserved
61 4’b0, // afu minor revision = 0
62 7’b0, // reserved
63 1’b1, // end of DFH list = 1
64 24’b0, // next DFH offset = 0
65 4’b0, // afu major revision = 0
66 12’b0 // feature ID = 0
67 };
68 16’h0002: tx.c2.data <= afu_id[63:0]; // AFU_ID_L
69 16’h0004: tx.c2.data <= afu_id[127:64]; // AFU_ID_H
70 16’h0006: tx.c2.data <= 64’h0; // DFH_RSVD0
71 16’h0008: tx.c2.data <= 64’h0; // DFH_RSVD1
72
73 // application logic registers
74 16’h0010: tx.c2.data <= 64’(Poly);
75 16’h0012: tx.c2.data <= 64’(Q);
76 16’h0014: tx.c2.data <= 64’(Ctrl);
77
78 default: tx.c2.data <= 64’h0;
79 endcase
80 end
81 end
82 end
83 endmodule

Figure 10. A template for the AFU Verilog code (Part b).

In Lines 10 to 15 the code sets the parameter n = 32 and declares a number of signals. The signal Q repre-
sents the LFSR in Figure 5. For the Verilog code in Figure 6 the signal Q served as the output of the module, but
for the AFU the processor reads the contents of registers via the tx output port.

Lines 18 and 19 declare a special type of CCI-P signal called mmioHdr. This signal provides the address of the

10

register currently being accessed by the processor, which is assigned to the 16-bit signal A in Line 21. The address
is implemented in the CCI-P as an offset from a base address that is used for memory-mapped I/O. Each address
A is aligned to a double-word (32-bit) boundary in the processor’s address space. Lines 14 and 15 assign the
processor n-bit data signal and write control signal to the variables D and W , respectively. These signals are valid
whenever the processor is performing a write to a register in the AFU.

Using the polynomial register as an example, the always block in Line 25 shows how registers can be defined in
the AFU. Note that this code is very similar to that from Figure 6.

Part b of Figure 10 gives mandatory code that must be present in an AFU to support read operations from the
processor at specific addresses. These addresses are decoded in the AFU by using the case statement in Line 56.
As shown, each address responds by placing data onto the tx output of the AFU. For address A = 0 the AFU
responds with a particular 64-bit data pattern that is required for any AFU. Addresses A = 2 and A = 4 respond
with the low and high 64-bits of the afu_id signal. This signal represents a globally-unique identifier for the AFU.
It is declared in Line 34 and initialized with the symbolic constant AFU_ACCEL_UUID, which is defined in the
file afu_json_info.vh. Finally, addresses A = 6 and A = 8 respond with 0 for our AFU. More details about the
mandatory addresses that have to be supported in an AFU can be found by searching online for documentation
related to CCI-P.

Lines 74 to 76 allow the processor to read the contents of the polynomial register, LFSR, and control register at
the addresses A = (10)16, A = (12)16, and A = (14)16, respectively. As mentioned previously, each address A
represents a double-word (32 bit) processor address. This means that the addresses decoded in our case statement
are aligned to a quad-word (64 bit) boundary, because the least-significant address bit A0 = 0 for each address.
The CCI-P specification requires this alignment for all registers in an AFU.

Perform the following steps to complete the design of the AFU:

1. Make a new folder on your home computer called lfsr_afu. Then, in this folder create two subfolders
named hw and sw. The sw folder will be used in Parts 3, 4, and 5 of this exercise. Now, in the hw
folder make a subfolder called rtl. You should now have created the folders illustrated in Figure 11. This
arrangement of folders is required when using the compilation tools that are provided on the DevCloud.

2. In your rtl subfolder, make a new Verilog source-code file called afu.sv. Enter the code from Figure 10
into this file and, as indicated in Part a of the figure, fill in the code that is needed to define the LFSR, control
register, and finite state machine. Note that the code shown in Figure 10 is provided for you in the file afu.sv
that is part of the design_files material included along with this exercise.

lfsr_afu

sw hw

rtl

Figure 11: The arrangement of folders for an AFU.

11

3. To compile the Verilog code for your AFU, the development tools on the DevCloud require several files
in addition to afu.sv. The names of the required files have to be listed in a plain-text file named filelist.txt
in the rtl folder. The contents of this file for our AFU is shown in Figure 12. The first file listed is
lfsr_afu.json, which gives some important information about the AFU in JavaScript Object Notation (JSON)
format. As shown in Figure 13, this JSON file specifies the type of CCI-P port used for the AFU, which
is called ccip_std_afu. This interface consists of clock, reset, receive (rx) and transmit (tx) ports, as given
in Figure 10. The JSON file also specifies the AFU name, lfsr_afu, and its Universally Unique Identifier
(UUID). The UUID shown in the figure is just a placeholder; we will generate a new UUID for the AFU
by using the uuidgen command that is available on the DevCloud. The Verilog source-code files listed in
filelist.txt specify the AFU and its CCI-P interface. The files ccip_interface_reg.sv and ccip_std_afu.sv have
to be present in the AFU’s rtl folder.

The files filelist.txt, lfsr_afu.json, ccip_interface_reg.sv, and ccip_std_afu.sv are provided for you as part of
the design_files that are included with this exercise. Copy these files into your rtl folder, to create the
structure of files illustrated in Figure 14.

lfsr_afu.json

afu.sv
ccip_interface_reg.sv
ccip_st_afu.sv

Figure 12: The contents of filelist.txt.

{
"version": 1,
"afu-image": {

"power": 0,
"afu-top-interface": {

"class": "ccip_std_afu"
},
"accelerator-clusters": [

{
"name": "lfsr_afu",
"total-contexts": 1,
"accelerator-type-uuid": "850adcc2-6ceb-4b22-9722-d43375b61c66"

}
]

}
}

Figure 13: The JSON file.

4. For the remainder of this exercise we assume that you are able to login to the DevCloud and configure
the environment variables and settings that are needed for AFU development. To perform this step it is
important to be familiar with the material presented in the tutorial Using the Intel FPGA DevCloud for AFU
Development. First, copy the folders and files shown in Figure 14 onto the DevCloud. Then, using the Linux
command line interface on the DevCloud execute the command uuidgen to generate a new UUID for the
LFSR AFU. Enter this new UUID into the file lfsr_afu.json, replacing the placeholder given in Figure 13.

5. On the DevCloud, set your working directory to the lfsr_afu folder, and then run the command:

afu_synth_setup -s hw/rtl/filelist.txt build_synth

12

lfsr_afu

sw hw

rtl

afu.sv filelist.txt ccip_interface_reg.svccip_std_afu.svlfsr_afu.json

Figure 14: The files needed for an AFU.

Now, change your working directory to the newly-created build_synth folder and execute the command
run.sh. This command uses the information in the lfsr_afu.json file to generate the Verilog header file
afu_json_info.vh, which is included in the code shown in Figure 10. The run.sh command then executes
the Intel Quartus® Prime software to compile the AFU into a circuit that can be implemented in the target
FPGA device.

The Quartus Prime software begins by executing its synthesis tools that compile your Verilog source code.
If any syntax errors are reported (they are shown in red), then fix these errors and compile again. Note that
it is “normal” to receive a significant number of warning messages from the Quartus Prime software when
compiling an AFU; while you should still monitor these messages, those that refer to code that is not part of
your afu.sv file can usually be ignored.

After successful compilation of your AFU code, the Quartus Prime software generates an FPGA program-
ming bit-stream file called lfsr_afu.gbs. In Intel® FPGA literature, this type of file is known as a Green
Bitstream and represents a partial-reconfiguation file for the target FPGA. You can download this gbs file
into the FPGA device on the DevCloud, where it joins the main bit-stream that is already present in the
FPGA. Intel refers to the main bit-stream as the Blue Bitstream. To download your AFU into the FPGA
execute the command:

fpgasupdate lfsr_afu.gbs.

Note that if you are using version 1.2.1 of the Arria 10 Development Stack on the DevCloud, then you have
to execute two commands to program the FPGA. First, execute:

PACSign PR -t UPDATE -H openssl_manager -i lfsr_afu.gbs -o lfsr_afu_unsigned.gbs

Type y (yes) in answer to the queries that are issued by this command. Then, execute:

fpgasupdate lfsr_afu_unsigned.gbs.

Now that the AFU has been downloaded into the target FPGA device, we can develop software programs which
run on the processor and make use of the AFU.

13

Part III
For the development of software for AFUs Intel provides a collection of open-source utilities known as the Open
Programmable Acceleration Engine (OPAE). An example of a C program that uses the OPAE infrastructure to
access the AFU developed in this exercise is given in Figure 15. This code includes the OPAE header file mmio.h,
which is required to perform memory-mapped I/O.

1 #include <stdio.h>
2 #include <opae/mmio.h>
3
4 // Application Logic register addresses (offsets)
5 #define POLY_REG 0X10 << 2
6 #define LFSR_REG 0X12 << 2
7 #define CTRL_REG 0X14 << 2
8
9 int open_AFU (fpga_handle *);

10 void close_AFU (fpga_handle);
11
12 int main(int argc, char *argv[])
13 {
14 fpga_handle handle = NULL;
15 if (open_AFU (&handle) < 0)
16 return -1;
17
18 uint32_t data;
19 (void) fpgaWriteMMIO32 (handle, 0, POLY_REG, 221); // set polynomial
20 (void) fpgaReadMMIO32 (handle, 0, POLY_REG, &data); // set seed
21 printf ("Polynomial set to: %d\n", data);
22
23 (void) fpgaWriteMMIO32 (handle, 0, LFSR_REG, 0x1);
24 (void) fpgaReadMMIO32 (handle, 0, LFSR_REG, &data);
25 printf ("Seed set to: %d\n", data);
26
27 bool found[256] = { false };
28 bool stop = false;
29 int length = 0;
30 while (!stop) {
31 if (found[data]) stop = true;
32 else {
33 ++length;
34 found[data] = true;
35
36 // get a new random integer from the LFSR //
37 (void) fpgaWriteMMIO32 (handle, 0, CTRL_REG, 0x1); // step
38 (void) fpgaWriteMMIO32 (handle, 0, CTRL_REG, 0x0); // stop
39 (void) fpgaReadMMIO32 (handle, 0, LFSR_REG, &data);
40 printf ("LFSR: %d\n", data);
41 }
42 }
43 printf("\nLength of random sequence: %d\n", length);
44
45 close_AFU (handle);
46 return 0;
47 }

Figure 15: Using the AFU in a C program.

14

Lines 5 to 7 in Figure 15 define the addresses that software has to use to access the polynomial, LFSR, and control
registers in the ALU. These addresses are the same as the ones given in Figure 10, except that they are shifted left
by two bit positions. This bit-shifting is done to convert the double-word (32-bit aligned) addresses used in the
Verilog code to byte addresses that are issued by the processor.

In Lines 9 and 10 prototypes are given for the functions open_AFU and close_AFU. The first of these functions
sets up a communication mechanism between the software program and the AFU, via a Linux device driver.
The second function terminates this connection. The open_AFU function calls several OPAE library utilities to
check if the AFU is available and working properly. If so, the handle variable, declared with the OPAE type
fpga_handle in Line 14, is set up as a pointer to the AFU. The open_AFU function uses this pointer to “print” to
the Linux Terminal the contents of the mandatory register addresses in the AFU, which are specified in Figure 10.
Appendix A shows the source code for open_AFU, in Figure 18. If it is able to communicate successfully with
the AFU then the function returns 0, otherwise it returns -1. Figure 19 in Appendix A displays the code for the
function print_AFU_regs, which is called by open_AFU, and the code for close_AFU is given in Figure 20.

The remainder of the code in Figure 15 uses memory-mapped I/O via the handle variable to access the registers
in the LFSR AFU. The fpgaReadMMIO32 function allows the software to read the contents of an AFU register,
whereas fpgaWriteMMIO32 allows a new value to be written to a register. The purpose of the software code is to
use the while loop in Line 30 to cause the LFSR to reproduce the sequence of random integers that is illustrated in
the simulation results in Figures 7 and 8. The while loop exits when the LFSR produces a value that is a duplicate
of a previous one, marking the end of the sequence.

To complete this part of the exercise perform the following steps:

1. A file named part3.c that contains the code from Figure 15, and a file named manage_afu.c, which holds the
C code for open_AFU and close_AFU, are included in the design_files that accompany this exercise. Copy
these files into the sw folder for the AFU on the DevCloud.

2. To compile the code in part3.c and manage_AFU.c you have to use a special Makefile that employs the
OPAE infrastructure on the DevCloud. Copy this Makefile, which is also included in the design_files for
this exercise, into your sw folder.

3. In the sw directory on the DevCloud run the command make part3. The results are displayed in Fig-
ure 16. As shown in the figure, one of the programs executed by make is afu_json_mgr. This program reads
the file lfsr_afu.json shown in Figure 13 to find the UUID for the AFU, and then produces the C header file
afu_json_info.h. This header file is used by manage_afu.c. To execute your program type ./part3, as
illustrated in Figure 16.

Part IV
As shown in Figure 16 the program from Part III produces a sequence of 15 random values based on the polynomial
P = 221 and starting with the seed value S = 1. In general, an LFSR may produce sequences of varying lengths
depending on the polynomial and seed combination. For an n-bit LFSR a polynomial that results in a maximal
sequence length, which is 2n− 1 different values, is known as a primitive polynomial. For this part of the exercise
you are to write a C program that employs your LFSR AFU to find all eight-bit primitive polynomials. The
smallest polynomial to consider is P = (80)16 = 128 and the largest is P = (FF)16 = 255.

Perform the following:

1. Write your C code in a file part4.c, making use of the functions open_AFU and close_AFU as shown in
Figure 15. For each polynomial of interest set the seed value to S = 1 and determine the resulting sequence
length. Control the LFSR using step mode so that you can generate one random value at a time. You should
display the value of each primitive polynomial on the Linux Terminal window. Also display the sequence
of random values produced by each of these polynomials, starting and ending with the seed value S = 1.

2. To compile your code on the DevCloud, put part4.c into your sw folder and execute make part4.

15

userid@s005-n005: /lfsr_afu/sw$ ls
Makefile manage_afu.c manage_afu.o part3.c
userid@s005-n005: /lfsr_afu/sw$ make part3
afu_json_mgr json-info --afu-json=../hw/rtl/lfsr_afu.json --c-hdr=afu_json_info.h
Writing afu_json_info.h
gcc -fstack-protector -fPIE -fPIC -O2 -D_FORTIFY_SOURCE=2 -Wformat

-Wformat-security -Werror -g -O2 -std=c99 -Wall -Wno-unknown-pragmas -c -o
part3.o part3.c

gcc -fstack-protector -fPIE -fPIC -O2 -D_FORTIFY_SOURCE=2 -Wformat
-Wformat-security -Werror -g -O2 -std=c99 -Wall -Wno-unknown-pragmas -c -o
manage_afu.o manage_afu.c

gcc -fstack-protector -fPIE -fPIC -O2 -D_FORTIFY_SOURCE=2 -Wformat
-Wformat-security -Werror -g -O2 -std=c99 -Wall -Wno-unknown-pragmas -o part3
part3.o manage_afu.o -z noexecstack -z relro -z now -pie -luuid -lpthread
-lopae-c

userid@s005-n005: /lfsr_afu/sw$ ls
afu_json_info.h Makefile manage_afu.c manage_afu.o part3 part3.c part3.o
userid@s005-n005: /lfsr_afu/sw$./part3
Opening lsfr_afu
AFU DFH REG = 0x1000010000000000
AFU ID HI = 0x8031be250cf440ee
AFU ID LO = 0xa411dbaf7e894df5
AFU NEXT = 0x0000000000000000
AFU RESERVED = 0x0000000000000000
Polynomial set to: 221
Seed set to: 1
LFSR: 221
LFSR: 179
LFSR: 132
LFSR: 66
LFSR: 33
LFSR: 205
LFSR: 187
LFSR: 128
LFSR: 64
LFSR: 32
LFSR: 16
LFSR: 8
LFSR: 4
LFSR: 2
LFSR: 1

Length of random sequence: 15
userid@s005-n005: /lfsr_afu/sw$

Figure 16: Compiling and executing part3.c.

Part V
In this part of the exercise you will utilize the LFSR AFU to help create an animation. Although the Linux
Terminal normally displays ASCII text, we can use the Terminal’s escape commands to make simple drawings,
often called ASCII graphics. Animations can be created on the Terminal by using commands to clear the screen,
move the Terminal cursor to specific locations, show/hide the cursor, change the color of characters, and so on.
An example of a program that uses ASCII graphics is given in Figure 17. It first includes the stdio.h library and
then defines constants, described later, for text colors which can be used in the Terminal window.

16

1 /* This program draws a few characters on the screen. */
2 #include <stdio.h>
3 #define YELLOW 33
4 #define CYAN 36
5 #define WHITE 37
6
7 void plot_pixel(int, int, char, char);
8
9 int main(void) {

10 int i;
11 printf ("\e[2J"); // clear the screen
12 printf ("\e[?25l"); // hide the cursor
13
14 plot_pixel (1, 1, CYAN, ’X’);
15 plot_pixel (12, 12, CYAN, ’X’);
16 for (i = 2; i < 12; ++i)
17 plot_pixel (6, i + 12, YELLOW, ’*’);
18
19 (void) getchar (); // wait for user to press return
20 printf ("\e[2J"); // clear the screen
21 printf ("\e[%2dm", WHITE); // reset foreground color
22 printf ("\e[%d;%dH", 1, 1); // move cursor to upper left
23 printf ("\e[?25h"); // show the cursor
24 fflush (stdout);
25 }
26
27 void plot_pixel(int x, int y, char color, char c) {
28 printf ("\e[%2dm\e[%d;%dH%c", color, y, x, c);
29 fflush (stdout);
30 }

Figure 17: An example of code that uses ASCII graphics.

A command is sent to the Terminal in line 11 by using printf. All Terminal window commands begin with the
ASCII ESC (escape) character, which is specified in the printf string using the syntax \e. The command in line 11,
which is [2J, instructs the Terminal to clear the screen. Another command, [?25l, given in line 12, causes the
Terminal to hide the cursor so that it is not visible to the user. Next, the function plot_pixel is called to draw
some characters at specific locations on the screen. Coordinate (1, 1) is at the top-left corner of the screen. The
calls to plot_pixel in lines 14 to 17 draw cyan-colored X characters at coordinates (1, 1) and (12, 12), and a
vertical yellow line of ten * characters along the sixth column.

The plot_pixel function, shown in lines 27 to 30 uses two commands to draw a character. The first command is
[ccm, where cc is called an attribute. The attribute can be used to set the color of text characters, by using different
values of cc. Examples of color attributes are cc = 31 (red), 32 (green), 33 (yellow), 34 (blue), 35 (magenta), 36
(cyan), and 37 (white). The second command in plot_pixel is [yy;xxH, where yy and xx specify a row and
column on the screen, respectively. This command moves the Terminal cursor to coordinate (xx, yy). In line 19
the program waits, using the getchar function, for the user to press a key. Finally, commands are sent to the
Terminal to clear the screen, set the color to white, set the cursor to coordinates (1, 1), and show the cursor.

The use of ASCII graphics described above became popular around the year 1980 when they were available in
computer video terminals called the VT100, manufactured by Digital Equipment Corporation. The Linux Terminal
provides ASCII graphics by emulating the capabilites of the VT100 video terminal. A listing of some escape
commands is given in Appendix B. More information about ASCII graphics commands can be found by searching
on the Internet for a topic such as “VT100 graphics”.

17

Perform the following:

1. Write C code using ASCII graphics to create an animation that “prints” random letters of the alphabet at
random screen coordinates. The LFSR AFU should be used in continuous mode to generate random integers
over a 32-bit range. You can set the polynomial to P = (b4bcd35c)16 = 3032273756, which is a 32-bit
primitive polynomial. Your code should use random values from the LFSR to choose the letter to display,
its color, and the (x, y) screen coordinates. As an example, if the LFSR output is called D, then to randomly
choose a letter c from one of the five letters in the string “intel”, where 0 selects ’i’, 1 select ’n’, and so on,
you can use the expression c = D % 5. The range of x and y coordinates produced by your program should
cover the whole Terminal window. Save your code in a file called part5.c.

2. On the DevCloud compile your program by executing make part5. When you execute the program by
typing ./part5 the effect should be that every location in the Terminal window gets modified almost
continuously. This result illustrates that the sequence of integers produced by the LFSR are sufficiently
random for our purposes. To see an example of a properly-working solution you can watch a YouTube
video at https://youtu.be/JSbhbNVzNAY. In this video the animation selects a random letter from
the string “intel” and prints it at a random location on the screen, using a random color. The program is
terminated by the user pressing ˆC. The video also shows a second animation in which ASCII graphics are
used to draw “lines” on the screen from one randomly-selected coordinate to another. Lines that are mostly
“horizontal” are drawn in blue, “vertical” lines in green, and diagonal lines in yellow or red. This program
first draws a few lines slowly so that the user can see what is happening, and then draws them as quickly as
possible until the program is terminated.

18

Appendix A
#include <stdio.h>
#include <uuid/uuid.h>
#include <opae/enum.h>
#include <opae/access.h>
#include <opae/mmio.h>
#include <opae/properties.h>
#include <opae/utils.h>
#include "afu_json_info.h"

// mandatory AFU register addresses (offsets)
#define AFU_DFH_REG 0x0
#define AFU_ID_LO 0x8
#define AFU_ID_HI 0x10
#define AFU_NEXT 0x18
#define AFU_RESERVED 0x20

int print_AFU_regs (fpga_handle);
fpga_properties filter = NULL;
fpga_token token = NULL;

int open_AFU (fpga_handle *handle) {
fpga_guid guid;
uint32_t num_matches;
fpga_result res = FPGA_OK;

char *AFU_NAME = AFU_ACCEL_NAME; // from json file
char *UUID = AFU_ACCEL_UUID; // from json file
printf ("Opening %s\n", AFU_NAME);
if (uuid_parse(AFU_ACCEL_UUID, guid) < 0) {

fprintf(stderr, "Error parsing guid ’%s’\n", UUID);
return -1;

}
if ((res = fpgaGetProperties (NULL, &filter)) != FPGA_OK) { // Look for AFU

fprintf(stderr, "Error creating properties object: %s\n", fpgaErrStr
(res));

return -1;
}
if ((res = fpgaPropertiesSetObjectType (filter,FPGA_ACCELERATOR)) != FPGA_OK) {

fprintf(stderr, "Error setting object type: %s\n", fpgaErrStr (res));
(void) fpgaDestroyProperties (&filter);
return -1;

}
if ((res = fpgaPropertiesSetGUID (filter, guid)) != FPGA_OK) {

fprintf(stderr, "Error setting GUID: %s\n", fpgaErrStr (res));
(void) fpgaDestroyProperties (&filter);
return -1;

}
if ((res = fpgaEnumerate (&filter, 1, &token, 1, &num_matches)) != FPGA_OK) {

fprintf(stderr, "Error enumerating AFUs: %s\n", fpgaErrStr (res));
(void) fpgaDestroyProperties (&filter);
return -1;

}
if (num_matches < 1) {

fprintf(stderr, "Error: AFU not found!\n");
(void) fpgaDestroyProperties (&filter);
return -1;

}

Figure 18: The open_AFU function (Part a).

19

/* Open AFU and map MMIO */
if ((res = fpgaOpen (token, handle, 0)) != FPGA_OK) {

fprintf(stderr, "Error opening AFU: %s\n", fpgaErrStr (res));
(void) fpgaDestroyToken (&token);
(void) fpgaDestroyProperties (&filter);
return -1;

}
if ((res = fpgaMapMMIO (*handle, 0, NULL)) != FPGA_OK) {

fprintf(stderr, "Error mapping MMIO space: %s\n", fpgaErrStr (res));
(void) fpgaClose (*handle);
(void) fpgaDestroyToken (&token);
(void) fpgaDestroyProperties (&filter);
return -1;

}
/* Reset AFU */
if ((res = fpgaReset (*handle)) != FPGA_OK) {

fprintf(stderr, "Error resetting AFU: %s\n", fpgaErrStr (res));
(void) fpgaUnmapMMIO (*handle, 0);
(void) fpgaClose (*handle);
(void) fpgaDestroyToken (&token);
(void) fpgaDestroyProperties (&filter);
return -1;

}
return print_AFU_regs (*handle);

}

Figure 18. The open_AFU function (Part b).

// Displays the contents of mandatory AFU registers
int print_AFU_regs (fpga_handle handle) {

uint64_t data = 0;
bool fail = false;
fpga_result res = FPGA_OK;

if ((res = fpgaReadMMIO64 (handle, 0, AFU_DFH_REG, &data)) != FPGA_OK) {
fprintf (stderr, "Error reading from MMIO: %s\n", fpgaErrStr (res));
fail = true;

}
else

printf("AFU DFH REG = 0x%016lx\n", data);

if ((res = fpgaReadMMIO64 (handle, 0, AFU_ID_HI, &data)) != FPGA_OK) {
fprintf (stderr, "Error reading from MMIO: %s\n", fpgaErrStr (res));
fail = true;

}
else

printf("AFU ID HI = 0x%016lx\n", data);
if ((res = fpgaReadMMIO64 (handle, 0, AFU_ID_LO, &data)) != FPGA_OK) {

fprintf (stderr, "Error reading from MMIO: %s\n", fpgaErrStr (res));
fail = true;

}
else

printf("AFU ID LO = 0x%016lx\n", data);

Figure 19: The print_AFU_regs function (Part a).

20

if ((res = fpgaReadMMIO64 (handle, 0, AFU_NEXT, &data)) != FPGA_OK) {
fprintf (stderr, "Error reading from MMIO: %s\n", fpgaErrStr (res));
fail = true;

}
else

printf("AFU NEXT = 0x%016lx\n", data);

if ((res = fpgaReadMMIO64 (handle, 0, AFU_RESERVED, &data)) != FPGA_OK) {
fprintf (stderr, "Error reading from MMIO: %s\n", fpgaErrStr (res));
fail = true;

}
else

printf("AFU RESERVED = 0x%016lx\n", data);

if (fail) return -1;
else return 0;

}

Figure 19. The print_AFU_regs function (Part b).

void close_AFU (fpga_handle handle) {
/* Unmap MMIO space */
(void) fpgaUnmapMMIO (handle, 0);
/* Release accelerator */
(void) fpgaClose (handle);
/* Destroy token */
(void) fpgaDestroyToken (&token);
/* Destroy properties object */
(void) fpgaDestroyProperties (&filter);

}

Figure 20: The close_AFU function.

21

Appendix B

Command Result
\e7 save cursor position and attributes
\e8 restore cursor position and attributes
\e[H move the cursor to the home position
\e[?25l hide the cursor
\e[?25h show the cursor
\e[2J clear window
\e[ccm set foreground color to cc1
\e[yy;xxH set cursor location to row yy, column xx

ASCII escape commands.

1

1Terminal window colors: cc = 31 (red), 32 (green), 33 (yellow), 34 (blue), 35 (magenta), 36 (cyan), and 37 (white)

22

Copyright © FPGAcademy.org. All rights reserved. FPGAcademy and the FPGAcademy logo are trademarks of
FPGAcademy.org. This document is provided "as is", without warranty of any kind, express or implied, including
but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no
event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action
of contract, tort or otherwise, arising from, out of or in connection with the document or the use or other dealings
in the document.

*Other names and brands may be claimed as the property of others.

23

