
Laboratory Exercise 4
Using Character Device Drivers

This exercise is a continuation of Laboratory Exercise 3, and is about character device drivers.

Part I
Write a character device driver that implements a stopwatch. The stopwatch should use the format MM:SS:DD,
where MM are minutes, SS are seconds, and DD are hundredths of a second. The code for your driver should ini-
tialize the stopwatch time to 59:59:99, and should decrement the time each 1/100 seconds. Your character device
driver should provide the current stopwatch time via the file /dev/stopwatch. When the time reaches 00:00:00 the
stopwatch should halt.

To keep track of time you should use a hardware timer module. The DE1-SoC Computer includes a number of
hardware timers. For this exercise use an interval timer implemented in the FPGA called FPGA Timer0. The
register interface for this timer has the base address 0xFF202000. As shown in Figure 1 this timer has six 16-bit
registers. To use the timer you need to write a suitable value into the Counter start value registers (there are two,
one for the upper 16 bits, and one for the lower 16 bits of the 32-bit counter value). To start the counter, you need
to set the START bit in the Control register to 1. Once started the timer will count down to 0 from the initial value
in the Counter start value register. The counter will automatically reload this value and continue counting if the
CONT bit in the Control register is 1. When the counter reaches 0, it will set the TO bit in the Status register to 1.
This bit can be cleared under program control by writing a 0 into it. If the ITO bit in the control register is set
to 1, then the timer will generate an ARM interrupt each time it sets the TO bit. The timer clock frequency is 100
MHz. The interrupt ID of the timer is 72. Follow the instructions in the tutorial Using Linux on the DE1-SoC
to register this interrupt ID with the Linux kernel and ensure that it invokes your kernel module whenever the
interrupt occurs.

Address 01531 . . .

0xFF202000 

0xFF202004 

. . .

Unused RUN TO

1

START CONT ITOSTOP

16 217

Unused

Counter start value (low) 0xFF202008 

Counter start value (high)0xFF20200C 

Counter snapshot (low)0xFF202010 

Counter snapshot (high)0xFF202014 

3

Not present
(interval timer has
16-bit registers)

Status register

Control register

Figure 1: The FPGA Timer0 register interface.

Perform the following:

1. Create a file called stopwatch.c and type your C code into this file.

2. Create a Makefile, compile your kernel module, and insert it into the kernel.

1



3. Test your character device driver by using the command cat /dev/stopwatch, which should print the
current stopwatch time.

Part II
Augment your module from Part I so that a user can control the stopwatch by writing commands to the file
/dev/stopwatch. Implement the following commands: stop, run, MM:SS:DD, disp, and nodisp. The stop
command causes the time to pause. The run command causes the stopwatch to operate normally, decrementing
every 1/100 seconds. The MM:SS:DD command is used to set the time. For example, the command echo
01:01:99 > /dev/stopwatch sets the time to 1 minute, 1 second, and 99 hundredths. The disp command
causes the stopwatch to show the time every 1/100 seconds on the seven-segment displays HEX5-HEX0. The
nodisp command turns off the seven-segment display feature, and clears HEX5-HEX0.
Perform the following:

1. Create a new version of your stopwatch.c source-code file and write the code required for the new function-
ality. In addition to open, release, and read functions needed for Part I, you will need to add a write
function. It should check which command has been written to the driver by the user, and take appropriate
action. A good way to identify the command passed to the driver in the write function is to make use of a
C library function such as strcmp.

2. Use a Makefile to compile your kernel module. Make sure that the stopwatch module from Part I is
removed from the kernel, and then insert the new stopwatch.ko file.

3. Test various commands to ensure that the character device driver works properly.

Part III
In this part we assume that the Linux system does not allow user-level code to access the memory addresses of I/O
devices. Instead, user-level code has to make use of device drivers. Perform the following.

1. Write a user-level program that controls the stopwatch driver from Part II. Your program should execute
in an endless loop, as follows. Pressing KEY0 should toggle the stopwatch between the run and pause
states. Pressing KEY1 to KEY3 should set the time according to the values of the SW slider switches. Set
the hundredths (DD) if KEY1 is pressed, the seconds (SS) for KEY2, and the minutes (MM) for KEY3.

2. Compile your program using a command such as gcc -Wall -o part3 part3.c.

3. Ensure that the required character device drivers are inserted into the Linux kernel. Test your program by
controlling the stopwatch using the SW switches and pushbutton KEYs.

Part IV
For this part you are to write a user-level program that implements a game. Your program should use the character
devices drivers that you wrote for the SW switches, KEY pushbuttons, LEDR lights, and stopwatch. The game
involves a series of mathematical problems, such as summations, presented to a user, with a certain amount of time
given to receive a correct answer. The game should perform as follows. In the first phase a default stopwatch
time is shown on the seven-segment displays, and the user can change the displayed time by using the SW switches
and KEYs. Using the same scheme as for Part III, pressing KEY1 changes the hundredths part of the time, pressing
KEY2 sets the seconds, and KEY3 changes the minutes. Pressing KEY0 starts the game. At this point the program
should print a message and wait for the user to press the return key. Following this action, the program should
present a series of math questions that the user needs to answer within the stopwatch time. Incorrect answers
to a question should be rejected, but the user should be allowed to try again as long as the time has not expired.
After receiving a correct answer, the stopwatch should be reset and a new question asked. To make the game
more interesting, you could increase the difficult of questions over time. At the end, when the user fails to respond
within the stopwatch time, some statistics about the results should be shown to the user.

2



Perform the following.

1. Write the code that asks a series of math questions. An example of output that might be produced by your
game, with user responses, is shown below.

Set stopwatch if desired, using KEY1, KEY2, and KEY3. Press KEY0 when done.
Press Enter to start

1 + 7 = 8
0 + 7 = 7
5 + 7 = 12
1 + 3 = 4
6 + 1 = 7
41 + 4 = 45
5 + 7 = 12
95 + 4 = 99
42 + 0 = 42
79 + 1 = 80
98 + 8 = 106
60 + 33 = 93
26 + 17 = 43
44 + 76 = 120
91 + 10 = 101
545 + 18 = 553
Try again: 563
972 + 3 = 975
572 + 75 = 627
Try again: 657
Time expired! You answered 17 questions, in an average of 2.73 seconds.

2. Compile your program using a command such as gcc -Wall -o part4 part4.c.

3. Run your program and make sure that the game functions properly.

Copyright c© Intel Corporation.

3


