
Laboratory Exercise 2
Developing Linux Programs that Communicate with the FPGA

Part I
In Lab Exercise 1 you were asked to write a user-level program to control the LEDR lights in the DE1-SoC
Computer. Here you are to write another user-level program, which controls the seven-segment displays in the
DE1-SoC Computer. Your program should display the message Intel SoC FPGA and should scroll the mes-
sage in the right-to-left direction across the displays. The letters in the message can be constructed as

Use a delay when scrolling the message so that the letters shift to the left at a reasonable speed. To implement
the required delay you can use a Linux library function such as nanosleep. To communicate with the seven-
segment displays use memory-mapped I/O as explained in the tutorial Using Linux on the DE1-SoC. The data
registers of the seven-segment display ports are shown in Figure 1. Remember that you have to translate the
physical addresses of the ports into virtual addresses that can be used by your program running under Linux.

0xFF200020 

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0xFF200030 

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

07 6815 142431 30 1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Unused

Figure 1: The seven-segment display ports.

Perform the following:

1. Create a file called part1.c and type your C code into this file. Compile your code using a command such as
gcc -Wall -o part1 part1.c.

2. Execute and test your program.

Part II
In Lab Exercise 1 you were asked to write a kernel module to control the LEDR lights and a seven-segment display
in the DE1-SoC Computer. The kernel module responded to interrupts generated by the KEY pushbutton port.
Here you are to write another interrupt-driven kernel module.

1



Your kernel module should display a real-time clock on the seven-segment display. The time should be displayed
in format MM:SS:DD, where MM are minutes, SS are seconds, and DD are hundredths of a second. To keep track
of time you should use a hardware timer module. The DE1-SoC Computer includes a number of hardware timers.
For this exercise use an interval timer implemented in the FPGA called FPGA Timer0. The register interface for
this timer has the base address 0xFF202000. As shown in Figure 2 this timer has six 16-bit registers. To use the
timer you need to write a suitable value into the Counter start value registers (there are two, one for the upper
16 bits, and one for the lower 16 bits of the 32-bit counter value). To start the counter, you need to set the START
bit in the Control register to 1. Once started the timer will count down to 0 from the initial value in the Counter
start value register. The counter will automatically reload this value and continue counting if the CONT bit in the
Control register is 1. When the counter reaches 0, it will set the TO bit in the Status register to 1. This bit can
be cleared under program control by writing a 0 into it. If the ITO bit in the control register is set to 1, then the
timer will generate an ARM interrupt each time it sets the TO bit. The timer clock frequency is 100 MHz. The
interrupt ID of the timer is 72. Follow the instructions in the tutorial Using Linux on the DE1-SoC to register this
interrupt ID with the Linux kernel and ensure that it invokes your kernel module whenever the interrupt occurs.

Address 01531 . . .

0xFF202000 

0xFF202004 

. . .

Unused RUN TO

1

START CONT ITOSTOP

16 217

Unused

Counter start value (low) 0xFF202008 

Counter start value (high)0xFF20200C 

Counter snapshot (low)0xFF202010 

Counter snapshot (high)0xFF202014 

3

Not present
(interval timer has
16-bit registers)

Status register

Control register

Figure 2: The FPGA Timer0 register interface.

Perform the following:

1. Create a file called timer.c and type your C code into this file.

2. Create a suitable Makefile that can be used to compile your kernel module and create the file timer.ko.
Insert this module into the kernel using the command insmod timer.ko. As soon as the module is
inserted, you should see the time 00:00:00 on the seven-segment displays. Each time an interrupt occurs
your interrupt-service routine should increment the value of the displayed time. When the time reaches
59:59:99, it should wrap around to 00:00:00.

You can remove your module from the Linux kernel by using the command rmmod timer. When re-
moved, your exit routine should clear the seven-segment diplays.

Part III
For this part you are to write a kernel module that implements a stopwatch. The stopwatch time should be shown
on the seven-segment displays, and the time should be settable using the SW switches and KEY pushbuttons in the
DE1-SoC Computer. The time should be displayed in the format MM:SS:DD as was done for Part II. Implement
the stopwatch module using two sources of interrupts: the hardware timer FPGA Timer0 and the KEY pushbutton
port. For each timer interrupt you should decrement the displayed time, stopping when it reaches 00:00:00.

2



For each interrupt from the KEY port you should do the following:

• KEY0: Toggle the stopwatch to be either running or paused.

• KEY1: When pressed, use the values of the SW switches to set the DD part of the stopwatch time. The
maximum value is 99.

• KEY2: When pressed, use the values of the SW switches to set the SS part of the stopwatch time. The
maximum value is 59.

• KEY3: When pressed, use the values of the SW switches to set the MM part of the stopwatch time. The
maximum value is 59.

Perform the following:

1. Create a file called stopwatch.c and type your C code into this file.

2. Create a suitable Makefile that can be used to compile your kernel module and create the file stopwatch.ko.
Make sure that the timer.ko module from Part II has already been removed from the kernel. Then, insert
the stopwatch module into the kernel by using the command insmod stopwatch.ko. As soon as the
module is inserted, you should see the time 59:59:99 start to decrement on the seven-segment displays.

The data register in the SW port is shown in Figure 3. For a description of the registers in the KEY port,
and how to use this port with interrupts, refer to the tutorial Using Linux on the DE1-SoC.

0xFF200040 

SW0SW9

Address

Data register031 910 . . .Unused

Figure 3: The SW switch port.

You can remove your module from the Linux kernel by using the command rmmod stopwatch. When
removed, your exit routine should clear the seven-segment displays.

Copyright c© Intel Corporation.

3


