
Laboratory Exercise 7
Using the ADXL345 Accelerometer

The purpose of this exercise is to experiment with the ADXL345 accelerometer chip that is included on the DE1-
SoC board. You will write programs that interact with the ADXL345 device under the Linux operating system,
running on the ARM processor in the DE1-SoC Computer. Also, you will add support in the Linux kernel for the
ADXL345 chip by creating a character device driver.

Part I
To learn about the operation of the ADXL345 accelerometer chip, read the tutorial called Using the Accelerometer
in DE-SoC Boards. This tutorial is available on the Intel FPGA University Program website. An example program
that demonstrates use of the accelerometer is included with the tutorial. This program assumes that no operating
system is being used (i.e., a “bare metal” environment), and therefore uses simple dereferencing of pointers to
communicate with the device. But, since your code needs to run under Linux on the DE1-SoC Computer, you will
have to map the required physical addresses into virtual addresses by using Linux kernel functions like mmap and
the /dev/mem interface. These concepts are discussed in detail in the tutorial Using Linux on the DE1-SoC.

Perform the following:

1. Read through the tutorial Using the Accelerometer in DE-SoC Boards. Create a new version of the C
program that accompanies the tutorial, which uses virtual addresses and can run under Linux.

2. In your program, configure the ADXL345 device to provide an output data rate of 12.5 Hz, using a fixed
10-bit resolution and +/- 16 g range. These settings provide an appropriate level of sensitivity from the
ADXL345 device, of about 31 mg per least-significant bit.

3. Use a Linux Terminal to compile and run your program. Tilt the DE1-SoC board in various directions and
observe the acceleration data that is printed by your program. Since the z axis of the accelerometer chip
on the DE1-SoC board is aligned with earth’s gravity, your program should read acceleration of approxi-
mately 1,000 mg in the z direction when the DE1-SoC board is stationary. You should end up with a pro-
gram that prints out acceleration data in the format <X-axis acceleration in mg>, <Y-axis
acceleration in mg>, <Z-axis acceleration in mg>.

Part II
In Part I you wrote a user-level program to directly read/write registers in the ADXL345 device by using memory-
mapped I/O. In this part, you will use a different approach, by adding support to the Linux kernel for accessing
the device. You are to create a Linux character device driver, in the form of a kernel module, that provides a
file-based I/O interface to accelerometer data. The driver must create the file /dev/accel in the Linux filesystem. A
read of this file should return accelerometer data in the format R XXXX YYYY ZZZZ SS, where R is 1 if new
accelerometer data is being provided, XXXX, YYYY, and ZZZZ are acceleration data in the x, y, and z axes, and SS
is the scale factor in mg/LSB for the acceleration data. As an example, if the ADXL345 has new data to report,
then a read of the file might return: "1 0 -1 32 31", which would represent 0 mg acceleration in the x axis, -31
mg acceleration in the y axis, and 992 mg acceleration in the z axis. If you were to perform another read from
/dev/accel immediately, then the device might not be ready to provide new data; it would then respond with "0 0
-1 32 31", indicating old data.

An outline of the required code for the accelerometer device driver is given in Figure 1. Lines 1 to 7 include
header files that are needed for the driver. Global variables that are used to access the accelerometer, which will be
described later, are declared in lines 10 and 11. Line 14 is a placeholder for the declarations of function prototypes

1

and variables that are needed for the character device driver. Prototypes have to be declared for the functions that
are executed when opening, reading, and closing the driver. Variables of type dev_t, cdev, and class have
to be declared and initialized in the function start_accel, shown in Lines 17 to 32, which is executed when the
accelerometer driver is inserted into the Linux kernel. Refer to Exercise 3 for a more detailed discussion about the
functions and variables that are needed for character device drivers.

To provide the kernel module with access to the I2C controller, which is used to communicate with the ADXL345
device, line 23 calls the ioremap_nocache function. Information about this function can be found in the
tutorial Using Linux on the DE1-SoC. Line 24 computes a virtual address for the system manager, which has to
be configured for use with the ADXL345 device. The next three lines call the Pinmux_Config, I2C0_Init,
and ADXL345_Init functions. You should be able to reuse the code that you wrote for these functions in Part I
of this exercise. You should initialize the ADXL345 with the same settings as for Part I.

Line 35 is a placeholder for the various functions that are needed to read and write to registers in the ADXL345
device. You should be able to reuse the code from Part I for these functions. The remainder of the code in Figure 1
refers to the functions that are needed to open, close, and read from the character device driver. A detailed
discussion of these functions can be found in Laboratory Exercise 3.

Perform the following:

1. Create a file named accel.c and fill in the missing code from Figure 1. Using a Makefile, compile your code
to create the kernel module accel.ko and insert this module into the Linux kernel.

2. Test your device driver by executing a command such as cat /dev/accel using a Linux Terminal
window. Try tilting the board in various directions and confirm that the driver provides appropriate results
each time that you read from /dev/accel.

3. Once you have confirmed correct operation of your character device driver, write a user-level program called
part2.c that uses the driver. A skeleton of an example program is given in Figure 2. Fill in the rest of the
code so that it performs some operations using the device driver. For example, you could write a loop that
continuously reads from the device and prints the results whenever new data is available. Compile your
program using a command such as gcc -Wall -o part2 part2.c, and test the program.

Part III
In Part II your character device driver supports only read operations. For this part, you are to add the following
commands that can be written to your device driver:

• device: prints on the Terminal (using printk) the ADXL345 device ID.

• init: re-initializes the ADXL345

• calibrate: executes a calibration routine

• format F G: sets the data format to fixed 10-bit resolution (F = 0), or full resolution (F = 1), with
range G = +/- 2, 4, 8, or 16 g

• rate R: sets the output data rate to R Hz. Your code should support a few examples of data rates, such
as 25 Hz, 12.5 Hz, and so on.

Perform the following:

1. Augment your device-driver code from Part II to support write operations, and implement the commands
listed above.

2

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/fs.h>
4 #include <linux/cdev.h>
5 #include <linux/device.h>
6 #include <asm/io.h>
7 #include <asm/uaccess.h>
8
9 // Declare global variables needed to use the accelerometer

10 volatile int * I2C0_ptr; // virtual address for I2C communication
11 volatile int * SYSMGR_ptr; // virtual address for System Manager communication
12
13 // Declare other variables and prototypes needed for a character device driver
14 . . . code not shown
15
16 /* Code to initialize the accelerometer driver */
17 static int __init start_accel(void)
18 {
19 // initialize the dev_t, cdev, and class data structures
20 . . . code not shown
21
22 // generate virtual addresses
23 I2C0_ptr = ioremap_nocache (0xFFC04000, 0x00000100);
24 SYSMGR_ptr = ioremap_nocache (0xFFD08000, 0x00000800);
25 if ((I2C0_ptr == 0) | | (SYSMGR_ptr == NULL))
26 printk (KERN_ERR "Error: ioremap_nocache returned NULL\n");
27
28 Pinmux_Config ();
29 I2C0_Init ();
30 ADXL345_Init ();
31 return 0;
32 }
33
34 // Functions needed to read/write registers in the ADXL345 device
35 . . . code not shown
36
37 static void __exit stop_accel(void)
38 {
39 /* unmap the physical-to-virtual mappings */
40 iounmap (I2C0_ptr);
41 iounmap (SYSMGR_ptr);
42
43 /* Remove the device from the kernel */
44 . . . code not shown
45 }
46
47 // Code for device_open and device_release
48 . . . code not shown
49
50 static ssize_t device_read(struct file *filp, char *buffer, size_t length,

loff_t *offset)
51 {
52 . . . code not shown
53 }

Figure 1: An outline of the ADXL345 device driver code.

3

2. Write a user-level program, called part3.c, that uses your character device driver. Implement a simple
graphical demo that draws a “bubble” on the screen. When the DE1-SoC board is stationary the bubble
should appear in the middle of the screen. Tilting the board right, left, up, or down should cause the bubble
to “move” accordingly. Also, print in the top-left of the screen the values of x, y, and z acceleration each
time new data is available from your device driver.

3. To implement graphics, you can use either ASCII commands in a Terminal window, or you can connect
a VGA monitor to the DE1-SoC board and use VGA graphics. ASCII graphics were described in Lab
Exercise 5, and VGA graphics were discussed in Lab Exercise 6.

4. Experiment by writing different commands to /dev/accel and examining the effect on your graphics display.
Depending on the data format that you set in the accelerometer, the graphics displayed by your program
may appear “jittery”. To ameliorate this effect, you can compute a running average of the acceleration data.
For example, to compute an average acceleration for the x-axis, an appropriate calculation could be

av_x = av_x * α + accel_x * (1− α)

Here, av_x is the average acceleration, and accel_x is the most recent x-axis data provided by the ADXL345.
Smaller/larger values of α can be used to decrease/increase the effect of new data on the average.

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>

// number of characters to read from /dev/accel
#define accel_BYTES 20

int main(int argc, char *argv[])
{

int accel_FD; // file descriptor
char accel_buffer[accel_BYTES]; // buffer for accel char data
// Declare other variables
. . . code not shown

// Open the character device driver
if ((accel_FD = open("/dev/accel", O_RDWR)) == -1)
{

printf("Error opening /dev/accel: %s\n", strerror(errno));
return -1;

}

// Perform some operations using the ADXL345 device
. . . code not shown

close (accel_FD);
return 0;

}

Figure 2: A program that communicates with /dev/accel.

4

Part IV
In addition to providing acceleration data, the ADXL345 device also supports “tap” and “double-tap” detection.
Perform the following:

1. Add tap and double-tap detection to your device-driver code from Part III. To learn how to configure the
accelerometer for tap detection, consult the product Data Sheet, which is available on Analog Device’s
website (www.analog.com). Some recommended tap-detection settings are

Tap threshold: 3 g
Maximum tap duration: 0.02 seconds
Tap latency: 0.02 seconds
Double-tap window: 0.3 seconds

2. Modify the read function for your character device driver so that it returns data in the format HH XXXX
YYYY ZZZZ SS. Here, HH is a two-digit hexadecimal value corresponding to the contents of the ADXL345
Sources of Interrupt register. In addition to reporting when new acceleration data is available this register
also indicates when tap or double-tap actions have been detected.

3. Write a user-level program, called part4.c, that demonstrates the detection of tap and double-tap actions.
One possibility is to augment the user-level program from Part III such that the animation displayed changes
based on whether a tap or double-tap has occurred.

Copyright c© Intel Corporation.

5

