
Laboratory Exercise 3
Character Device Drivers

Part I
This exercise is about character device drivers, which are kernel modules that provide a file-based interface to user-
level programs. When a character device driver is inserted into the Linux kernel, a special type of file associated
with the driver is created, usually in the filesystem folder /dev. For example, if the driver is named chardev then
the associated file would be /dev/chardev. A user-level program can read or write to this file to communicate with
the driver.

An example of code for a character device driver is given in Figure 1. This is a trivial example that is meant
to illustrate how the code for a driver has to be structured. If a user reads from this driver, it simply replies
with the text Hello from chardev. One way to read from the driver is to execute the Linux command
cat /dev/chardev. This driver supports both reading and writing. The user can change the character string
provided by the driver by writing to it. One way to write to the driver is to use the Linux command echo "New
message" > /dev/chardev.

The driver is created by declaring a number of variables and data structures, and calling several functions that
interact with the Linux kernel. Important lines of code in Figure 1 are described below. Lines 1 to 7 include
some header files that are required for character device drivers. Lines 10 to 13 provide prototype declarations
for the functions device_open, device_release, device_read, and device_write. These are the
functions that will be called by the Linux kernel when a user program performs an open, close, read, or write
operation, respectively, on the file /dev/chardev.

Lines 18 to 20 declare some special types of variables. All character device drivers must declare these vari-
ables, which are of type dev_t, cdev, and class. They are initialized in lines 32 to 56, in the function
start_chardev, which calls a number of kernel functions. The first step to initialize these variables, shown
in line 36, is to obtain a device number by calling the kernel function alloc_chrdev_region. Then, the
class structure is set up in line 40 by calling class_create and the cdev structure is initialized in line 43 by
calling the cdev_alloc function. Line 44 initializes the cdev structure with a pointer to the fops structure,
which specifies the names of the functions that open, close, read, and write to the character device driver. Finally,
lines 48 and 52 add the cdev device and the class to the kernel. Line 53 initializes the chardev_msg array
with the default text message. The start_chardev function is executed when the character device driver is
inserted into the Linux kernel. When this driver is removed from the kernel, the function stop_chardev is
called, shown in lines 57 to 63. Note that it is possible to print error or debug information on the Linux terminal
window, by calling the printk kernel function. This function works similarly to the C library function printf, and
has the same types of formatting options. Examples of printk are shown in Lines 37 and 49.

Lines 65 to 75 give the code for device_open and device_release. For most character device drivers
nothing needs to be done in these functions, and hence the code simply returns.

Lines 77 to 89 show the device_read function. The first argument to this function, filp, is not used in this
example. The second argument, buffer, is used to pass character data from the driver back to the user-level
process that read from /dev/chardev. The length argument specifies the maximum number of bytes that can be
stored in the buffer. The final argument, offset, will be discussed later. Lines 82 to 83 determine how much
data can be sent back to the kernel. If length is greater than bytes then the whole message can be sent at once.
Otherwise only length characters can be sent. The value of bytes is calculated in Line 82. When a user opens
the file /dev/chardev, and then reads from the file, *offset will be 0. Thus, bytes will be set to the length of
the character string that is returned when the driver is read.

1

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/fs.h>
4 #include <linux/cdev.h>
5 #include <linux/device.h>
6 #include <asm/io.h>
7 #include <asm/uaccess.h>
8
9 /* Kernel character device driver /dev/chardev. */

10 static int device_open (struct inode *, struct file *);
11 static int device_release (struct inode *, struct file *);
12 static ssize_t device_read (struct file *, char *, size_t, loff_t *);
13 static ssize_t device_write(struct file *, const char *, size_t, loff_t *);
14
15 #define SUCCESS 0
16 #define DEVICE_NAME "chardev"
17
18 static dev_t dev_no = 0;
19 static struct cdev *chardev_cdev = NULL;
20 static struct class *chardev_class = NULL;
21 #define MAX_SIZE 256 // assume that no message longer than this will be used
22 static char chardev_msg[MAX_SIZE]; // the string that can be read or written
23
24 static struct file_operations fops = {
25 .owner = THIS_MODULE,
26 .open = device_open,
27 .release = device_release,
28 .read = device_read,
29 .write = device_write
30 };
31
32 static int __init start_chardev(void)
33 {
34 int err = 0;
35 /* Get a device number. Get one minor number (0) */
36 if ((err = alloc_chrdev_region (&dev_no, 0, 1, DEVICE_NAME)) < 0) {
37 printk (KERN_ERR "chardev: alloc_chrdev_region() error %d\n", err);
38 return err;
39 }
40 chardev_class = class_create (THIS_MODULE, DEVICE_NAME);
41
42 // Allocate and initialize the char device
43 chardev_cdev = cdev_alloc ();
44 chardev_cdev->ops = &fops;
45 chardev_cdev->owner = THIS_MODULE;
46
47 // Add the character device to the kernel
48 if ((err = cdev_add (chardev_cdev, dev_no, 1)) < 0) {
49 printk (KERN_ERR "chardev: cdev_add() error %d\n", err);
50 return err;
51 }
52 device_create (chardev_class, NULL, dev_no, NULL, DEVICE_NAME);
53 strcpy (chardev_msg, "Hello from chardev\n");
54
55 return 0;
56 }

Figure 1: The character device driver code. (Part a)

2

57 static void __exit stop_chardev(void)
58 {
59 device_destroy (chardev_class, dev_no);
60 cdev_del (chardev_cdev);
61 class_destroy (chardev_class);
62 unregister_chrdev_region (dev_no, 1);
63 }
64
65 /* Called when a process opens chardev */
66 static int device_open(struct inode *inode, struct file *file)
67 {
68 return SUCCESS;
69 }
70
71 /* Called when a process closes chardev */
72 static int device_release(struct inode *inode, struct file *file)
73 {
74 return 0;
75 }
76
77 /* Called when a process reads from chardev. Provides character data from
78 * chardev_msg. Returns, and sets *offset to, the number of bytes read. */
79 static ssize_t device_read(struct file *filp, char *buffer, size_t length,

loff_t *offset)
80 {
81 size_t bytes;
82 bytes = strlen (chardev_msg) - (*offset); // how many bytes not yet sent?
83 bytes = bytes > length ? length : bytes; // too much to send at once?
84
85 if (bytes)
86 (void) copy_to_user (buffer, &chardev_msg[*offset], bytes);
87 *offset = bytes; // keep track of number of bytes sent to the user
88 return bytes;
89 }
90
91 /* Called when a process writes to chardev. Stores the data received into
92 * chardev_msg, and returns the number of bytes stored. */
93 static ssize_t device_write(struct file *filp, const char *buffer, size_t

length, loff_t *offset)
94 {
95 size_t bytes;
96 bytes = length;
97
98 if (bytes > MAX_SIZE - 1) // can copy all at once, or not?
99 bytes = MAX_SIZE - 1;

100 (void) copy_from_user (chardev_msg, buffer, bytes);
101 chardev_msg[bytes] = ’\0’; // NULL terminate
102 // Note: we do NOT update *offset; we keep the last MAX_SIZE or fewer bytes
103 return bytes;
104 }
105
106 MODULE_LICENSE("GPL");
107 module_init (start_chardev);
108 module_exit (stop_chardev);

Figure 1. The character device driver code. (Part b)

3

In Line 86 the kernel function copy_to_user is called to return character data back to the user via the buffer.
The kernel variable offset is set to the value of the variable bytes in line 87. This value of offset, associated
with /dev/chardev, is stored in the kernel as long as the file remains open. In line 88 the device_read function
provides as a return value the number of bytes stored into the buffer. A typical user-level program that reads
from the device driver (e.g., cat /dev/chardev) will read from the file until device_read returns 0, which
indicates end-of-file. The way this works in our example is as follows. The first time device_read is called it
copies the character string back to the buffer and returns the string length. But a second call to device_read
will copy nothing into the buffer and will return 0. This mechanism is facilitated by the way in which offset
is used in the code.

Lines 91 to 104 show the device_write function. The first argument to this function, filp, is not used in
this example. The second argument, buffer, is used to get character data from the user program into the device
driver. The length argument specifies the amount of data that is to be transferred. The offset argument is
not used in this example. Data transferred from the user is stored into chardev_msg, overwriting the previous
message. Line 98 checks for overflow, so that the amount of data can be reduced if needed. In line 100 the kernel
function copy_from_user is called to get the user-data and copy it into chardev_msg.

The device_write function provides as a return value the number of bytes copied into chardev_msg.
A typical user-level program (e.g., echo "New message" > /dev/chardev) will continue to call the
device_write function until a total of length bytes have been received by the driver. In our example each
call to device_write overwrites the data stored in chardev_msg.

Perform the following:

1. Create a C source-code file named chardev.c for the device driver code in Figure 1. The source code can be
obtained alongside this lab exercise on the Intel FPGA University Program website.

2. Create a Makefile for your character device driver, following the format given in the tutorial Using Linux
on the DE1-SoC. Compile the code to create the kernel module chardev.ko, and insert this module into the
Linux kernel.

3. Check the filesystem folder /dev to see that the file /dev/chardev was created as a result of inserting your
kernel module. Type the command cat /dev/chardev and observe that your character device driver
responds with the message Hello from chardev. Overwrite the default message by typing a command
such as echo "New Message" > /dev/chardev. Then, issue the cat command again to see that
the driver responds with the new message.

4. In addition to using commands like cat and echo, you can write your own user-level programs that read
and write to your character device driver. An example program is given in Figure 2. It uses the kernel
functions open, read, write, and close to communicate with the character device driver through
the file /dev/chardev. Create a C source-code file called part1.c for this program, and compile it using a
command such as gcc -Wall -o part1 part1.c. You can obtain the source code file from the
Intel University Program website. Run the resulting executable program and observe the output that it
produces.

Instead of using the kernel functions open, read, write, and close, an alternative is to use the C library
functions fopen, fread, fwrite, and fclose. A version of the code in part1.c based on using fopen
is also provided on the Intel FPGA University Program website. Whether a programmer uses the open or
fopen families of functions is mostly a matter of personal preference.

5. An alternative version of the read_device function is given in Figure 3. Instead of calling the kernel
function copy_to_user, this code copies one byte at a time by calling the kernel function put_user.
Similarly, an alternative version of the device_write function that transfers one byte at a time instead
of calling copy_from_user is shown in Figure 3. These alternative versions of the code are meant to
provide additional examples of how device driver code can be written. The two versions of the code perform
exactly the same functions.

4

#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>

#define BYTES 256 // max # of bytes to read from /dev/chardev

volatile sig_atomic_t stop;
void catchSIGINT(int signum){

stop = 1;
}

/* This code uses the character device driver /dev/chardev. The code reads the

* default message from the driver and then prints it. After this the code

* changes the message in a loop by writing to the driver, and prints each new

* message. The program exits if it receives a kill signal (for example, ^C

* typed on stdin). */
int main(int argc, char *argv[]){

int chardev_FD; // file descriptor
char chardev_buffer[BYTES]; // buffer for chardev character data
int ret_val, chars_read; // number of characters read
char new_msg[128]; // space for the new message
int i_msg;

// catch SIGINT from ^C, instead of having it abruptly close this program
signal(SIGINT, catchSIGINT);

// Open the character device driver for read/write
if ((chardev_FD = open("/dev/chardev", O_RDWR)) == -1) {

printf("Error opening /dev/chardev: %s\n", strerror(errno));
return -1;

}

i_msg = 0;
while (!stop) {

chars_read = 0;
while ((ret_val = read (chardev_FD, chardev_buffer, BYTES)) != 0)

chars_read += ret_val; // read the driver until EOF
chardev_buffer[chars_read] = ’\0’; // NULL terminate
printf ("%s", chardev_buffer);

sprintf (new_msg, "New message %d\n", i_msg);
i_msg++;
write (chardev_FD, new_msg, strlen(new_msg));

sleep (1);
}

close (chardev_FD);
return 0;

}

Figure 2: A program that communicates with /dev/chardev.

5

/* Called when a process reads from chardev. */
static ssize_t device_read(struct file *filp, char *buffer, size_t length,

loff_t *offset)
{

size_t bytes_read = 0;
char *msg_Ptr = &(chardev_msg[*offset]);

// Write to user buffer
while (length && *msg_Ptr) {

put_user(*(msg_Ptr++), buffer++);
length--;
bytes_read++;

}
(*offset) = bytes_read;
return bytes_read;

}

/* Called when a process writes to chardev */
static ssize_t device_write(struct file *filp, const char *buffer, size_t

length, loff_t *offset)
{

int i;
for (i = 0; i < length; ++i)

chardev_msg[i] = buffer[i]; // assume that data won’t overflow
chardev_msg[i] = ’\0’; // NULL terminate
return length;

}

Figure 3: Alternative versions of device_read and device_write

Part II
In some Linux systems user-level programs are not permitted to access the physical memory addresses of I/O
devices. In such systems I/O devices can only be accessed via device drivers. In this part you are to implement
two character device drivers. One driver provides the state of the KEY pushbutton switches in the DE1-SoC
Computer, via the file /dev/KEY. The other driver provides the state of the SW slider switches, via the file /dev/SW.

Perform the following:

1. Create a new kernel module in a file KEY_SW.c. Write the code for both character device drivers in this
module. Declare separate variables of type dev_t, cdev, and class for each driver. Initialize each of
these variables by following the steps shown in Figure 1. When setting up the fops data structure (see line 24
in Figure 1), each of your character device drivers needs to have a function for opening, releasing,
and reading its /dev/ file. These drivers do not require a function for writing, since a user would not
need to write anything to /dev/KEY or /dev/SW.

Your module needs to have an initialization function. If this function were named init_drivers, then it
would be declared using the syntax

static int __init init_drivers(void)

Remember that you have to identify the module initialization function by using the statement

module_init (init_drivers);

In KEY_SW.c declare global variables that will hold virtual addresses for the KEY and SW ports in the DE1-
SoC Computer. Initialize these variables in init_drivers, using the kernel function ioremap_nocache,
as illustrated in the tutorial Using Linux on the DE1-SoC. Note that you do not need to use interrupts for
this part of the exercise.

6

Write code for the open, release, and read functions for your drivers. For the KEY driver you should
read the state of the KEYs from the port’s Edgecapture register. The programmer registers in the KEY port
of the DE1-SoC Computer are illustrated in Figure 4. Return the KEY values to the user as character data
(ASCII) in the read function for the KEY driver. One way to convert binary data into character data is to
make use of a library function such as sprintf. For the SW driver, read the slider switch settings from the
port’s Data register and return these values to the user, in the form of character data, via the driver’s read
function. The SW port is illustrated in Figure 5.

Address 02 14 331 30 . . .

0xFF200050

0xFF200058

0xFF20005C

Unused

KEY3-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 4: The KEY pushbutton switch port.

0xFF200040

SW0SW9

Address

Data register031 910 . . .Unused

Figure 5: The SW slider switch port.

2. Create a Makefile that can be used to compile your kernel module to produce the file KEY_SW.ko. Insert this
module into the kernel and verify that it creates the character device files /dev/KEY and /dev/SW.

3. Test your drivers by using the commands cat /dev/KEY and cat /dev/SW. Verify that the drivers
provide correct values for the switches.

Part III
For this part you are to write another two character device drivers. One driver controls the LEDR lights in the
DE1-SoC Computer, via the file /dev/LEDR. The other driver controls the seven-segment displays HEX5−HEX0,
via the file /dev/HEX. The LEDR port in the DE1-SoC Computer is illustrated in Figure 6, and the seven-segment
display ports are depicted in Figure 7. Your driver should be able to display decimal digits 0 − 9 on each of the
six displays. Perform the following:

1. Create a kernel module source-code file called LEDR_HEX.c. Implement both character device drivers in
this module. For both drivers you should implement functions for open, release, and write operations.
These drivers do not require a read function.

2. Create a Makefile, compile your module, and insert it into the kernel.

3. Test the LEDR and HEX character device drivers by using the echo Linux command.

7

0xFF200000

LEDR0LEDR9

Address

031 910 . . .Unused Data register

Figure 6: The LEDR red light port.

0xFF200020

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0xFF200030

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

07 6815 142431 30 1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Unused

Figure 7: The seven-segment display ports.

Part IV
For this part you are to write a user-level program called part4.c that makes use of the character device drivers
from Parts II and III. Perform the following:

1. In your program open the files /dev/KEY and /dev/SW for reading, and open the files /dev/LEDR and
/dev/HEX for writing. Make a loop in your program that does the following. Whenever a KEY is pressed
capture the values of the SW switches. Display these values on the LEDR lights. Also, keep a running
accumulation of the SW values that have been read, and show this sum on the HEX displays, as a decimal
value.

2. Compile your program using a command such as gcc -Wall -o part4 part4.c.

3. Run your program and make sure that it works properly. Each time a KEY is pressed, the values of the SW
switches should immediately appear on the LEDR lights and the sum should appear on the HEX displays.
As an example, if the SW switches are set to 0000000101, then the first time a KEY is pressed 000005
should be shown on the HEX displays, and the second time a KEY is pressed 000010 should be displayed.

Copyright c© Intel Corporation.

8

