
Laboratory Exercise 5
Using ASCII Graphics for Animation

The purpose of this exercise is to learn how to perform simple animations under Linux. We will use the ARM
A9 processor, in the DE1-SoC Computer. Graphics will be displayed by sending special commands to a Linux
Terminal window.

Part I
A Linux Terminal window is normally used to display ASCII text. But the Terminal also supports a number of
special commands that can be used to make simple drawings, often called ASCII graphics. You can use commands
to clear the screen, move the Terminal cursor to specific locations, show/hide the cursor, change the color of text,
and so on. An example of a program that uses ASCII graphics is given in Figure 1.

1 /* This program draws a few characters on the screen. */
2 #include <stdio.h>
3 #define YELLOW 33
4 #define CYAN 36
5 #define WHITE 39
6
7 void plot_pixel(int, int, char, char);
8
9 int main(void) {

10 char c;
11 printf ("\e[2J"); // clear the screen
12 printf ("\e[?25l"); // hide the cursor
13
14 plot_pixel (1, 1, CYAN, ’*’);
15 plot_pixel (80, 24, CYAN, ’*’);
16 plot_pixel (40, 12, YELLOW, ’X’);
17
18 c = getchar (); // wait for user to press return
19 printf ("\e[2J"); // clear the screen
20 printf ("\e[%2dm", WHITE); // reset foreground color
21 printf ("\e[%d;%dH", 1, 1); // move cursor to upper left
22 printf ("\e[?25h"); // show the cursor
23 fflush (stdout);
24 }
25
26 void plot_pixel(int x, int y, char color, char c)
27 {
28 printf ("\e[%2dm\e[%d;%dH%c", color, y, x, c);
29 fflush (stdout);
30 }

Figure 1: An example of code that uses ASCII graphics.

The first line of code in Figure 1 includes the stdio.h library, which is required to use the printf function. The
next three lines define constants, described later, for text colors which can be used in the Terminal window. A
command is sent to the Terminal in line 11 by using printf. All Terminal window commands begin with the ASCII
ESC (escape) character, which is specified in the printf string using the syntax \e. The command in line 11,

1

which is [2J, instructs the Terminal to clear the screen. Another command, [?25l, given in line 12, causes the
Terminal to hide the cursor so that it is not visible to the user. Next, the function plot_pixel is called to draw
three characters at specific locations on the screen. In this example the size of the Terminal window is 80 columns
by 24 rows. Coordinates (1, 1) are at the top-left corner of the screen and (80, 24) are at the bottom-right corner.
The calls to plot_pixel in lines 14 to 16 draw cyan-colored * characters at coordinates (1, 1) and (80, 24), and
a yellow X in the middle of the screen.

The plot_pixel function, shown in lines 26 to 30 uses two commands to draw a character. The first command
is [nnm, where nn is called an attribute. The attribute can be used to set the color of text characters, by using
different values of nn. Examples of color attributes are nn = 31 (red), 32 (green), 33 (yellow), 34 (blue),
35 (magenta), 36 (cyan), and 37 (white). The second command in plot_pixel is [rr;ccH, where rr and
cc specify a row and column on the screen, respectively. This command moves the Terminal cursor to (x, y)
coordinates (cc, rr). In line 18 the program waits, using the getchar function, for the user to press a key.
Finally, commands are sent to the Terminal to clear the screen, set the text-color to white, set the cursor to
coordinates (1, 1), and to show the cursor.

The ASCII graphics commands described above became popular around the year 1980 when they were introduced
in computer video terminals called the VT100, manufactured by Digital Equipment Corporation. The Linux Ter-
minal provides ASCII graphics by emulating the capabilites of the VT100 video terminal. More information about
ASCII graphics commands can be found by searching on the Internet for a topic such as “VT100 graphics”.

Perform the following

1. Type the code in Figure 1 into a file.

2. Compile your program and execute it in a Linux Terminal window to display the ASCII graphics.

Part II
In this part you will learn how to implement a simple line-drawing algorithm.

Drawing a line on a screen requires coloring “pixels” between two coordinates (x1, y1) and (x2, y2), such that the
pixels represent the desired line as closely as possible. In the case of ASCII graphics, a pixel represents a character
coordinate on the screen. Consider the example in Figure 2, where we want to draw a line between coordinates
(1, 1) and (12, 5). The squares in the figure represent the location and size of pixels on the screen. As indicated in
the figure, we cannot draw the line precisely—we can only draw a shape that is similar to the line by coloring the
pixels that fall closest to the line’s ideal location on the screen.

Figure 2: Drawing a line between coordinates (1, 1) and (12, 5).

We can use algebra to determine which pixels to color. This is done by using the end points and the slope of the
line. The slope of our example line is slope = (y2 − y1)/(x2 − x1) = 4/11. Starting at point (1, 1) we move
along the x axis and compute the y coordinate for the line as follows:

2

y = y1 + slope× (x− x1)

Thus, for column x = 2, the y location of the pixel is 1 + 4
11 × (2− 1) = 1 4

11 . Since pixel locations are defined
by integer values we round the y coordinate to the nearest integer, and determine that in column x = 2 we should
color the pixel at y = 1. For column x = 3 we perform the calculation y = 1 + 4

11 × (3 − 1) = 1 8
11 , and round

the result to y = 3. Similarly, we perform such computations for each column between x1 and x2.

The approach of moving along the x axis has drawbacks when a line is steep. A steep line spans more rows than
it does columns, and hence has a slope with absolute value greater than 1. In this case our calculations will not
produce a smooth-looking line. Also, in the case of a vertical line we cannot use the slope to make a calculation.
To address this problem, we can alter the algorithm to move along the y axis when a line is steep. With this change,
we can implement a line-drawing algorithm known as Bresenham’s algorithm. Pseudo-code for this algorithm is
given in Figure 3. The first 15 lines of the algorithm make the needed adjustments depending on whether or not
the line is steep. Then, in lines 17 to 22 the algorithm increments the x variable 1 step at a time and computes
the y value. The y value is incremented when needed to stay as close to the ideal location of the line as possible.
Bresenham’s algorithm calculates an error variable to decide whether or not to increment each y value. The
version of the algorithm shown in Figure 3 uses only integers to perform all calculations. To understand how this
algorithm works, you can read about Bresenham’s algorithm in a textbook or by searching for it on the Internet.

1 draw_line(x0, x1, y0, y1)
2
3 boolean is_steep = (abs(y1 - y0) > abs(x1 - x0))
4 if is_steep then
5 swap(x0, y0)
6 swap(x1, y1)
7 if x0 > x1 then
8 swap(x0, x1)
9 swap(y0, y1)

10
11 int deltax = x1 - x0
12 int deltay = abs(y1 - y0)
13 int error = -(deltax / 2)
14 int y = y0
15 if y0 < y1 then y_step = 1 else y_step = -1
16
17 for x from x0 to x1
18 if is_steep then draw_pixel(y,x) else draw_pixel(x,y)
19 error = error + deltay
20 if error ≥ 0 then
21 y = y + y_step
22 error = error - deltax

Figure 3: Pseudo-code for a line-drawing algorithm.

Perform the following:

1. Write a C program that uses Bresenham’s line-drawing algorithm to draw a few lines on the screen. An
example of output that your program might produce is illustrated in Figure 4. In this example the lines are
drawn using the ‘*’ character, but you can use any ASCII character to draw your lines.

2. Compile and test your program using a Linux Terminal.

3

Figure 4: Drawing a few lines on the screen.

Part III
Animation is an exciting part of computer graphics. Moving a displayed object is an illusion created by showing
this same object at different locations on the screen. A simple way to “move” an object is to first draw the object
at one position, and then after a short time erase the object and draw it again at another nearby position.

To realize animation it is necessary to move objects at regular time intervals. For this exercise we can use a timer
controlled by the Linux kernel, such as the nanosleep function. A reasonable delay might be about 0.1 seconds,
but you should experiment with different animation delays and observe the results. Documentation for nanosleep
can be obtained by searching on the Internet.

Perform the following:

1. Write a C-language program that moves a horizontal line up and down on the screen and “bounces” the line
off the top and bottom edges of the display. Your program should first clear the screen and then draw the
line at a starting row. Then, in an endless loop you should erase the line, and redraw it one row above or
below the last one. When the line reaches the top, or bottom, of the screen it should start moving in the
opposite direction.

2. Compile your code and test it. Experiment with different animation delay times.

Part IV
Having gained the basic knowledge about displaying images and animations, you can now create a more interesting
animation.

You are to create an animation of five objects on the screen. These objects should appear to be moving continuously
and “bouncing” off the edges of the screen. The objects should be connected with lines to form a chain. An
illustration of the animation is given in Figure 5. Part a of the figure shows one position of the objects with arrows
that indicate the directions of movement, and Figure 5b shows a subsequent position of the objects. In each step
of your animation each of the objects should appear to “move” on a diagonal line: up/left, up/right, down/left, or
down/right. Move the objects one row and one column at a time on the Terminal screen.

4

(a) (b)

Figure 5: Two instants of the animation.

To make the animation look slightly different each time you run it, use the C library function rand to help calculate
initial positions for each of the objects, and to determine their directions of movement.

Perform the following:

1. Write a C-language program to implement your animation. Use some ASCII character to represent each
object—for example, the ‘X’ character. Connect the objects together by drawing lines using other characters—
for example ‘*’, ’-’, or ‘|’. Use Bresenham’s algorithm, described in Part II, to draw the lines. An example
of a suitable main program is given in Figure 6. The code first initializes some variables, sets the locations
of the objects to be drawn, and sets the animation time. The code then enters an infinite loop, which can be
interrupted by pressing ˆC on the keyboard.

In each iteration of the loop the code calls a function to draw the animation. The draw function first clears
the screen, draws the objects and lines, and then updates the locations of objects. At the bottom of the loop
the code calls the nanosleep function to wait for the animation time to expire.

2. Compile your program and test the animation. Note that, depending on the quantity of text being shown
on the screen, your animation may look “smoother” if the connection between your host computer and the
DE1-SoC Computer has a high bandwidth; for example, a network connection may provide better results in
comparison to a serial-port connection.

Part V
For this part of the exercise you are to enhance the animation from Part IV so that during the animation the
following changes can take place:

1. The speed of movement of the objects can be increased or decreased

2. The number of objects in the animation can be increased or decreased

3. The lines between objects can be drawn or not drawn

Perform the following:

1. Implement the speed control discussed above for the animation. The speed of animation should be increased
by some amount, say 10%, when you press the pushbutton switch KEY0, and decreased by the same amount

5

when you press KEY1. Pressing KEY2 should reduce the number of displayed objects by one, and pressing
KEY3 should increase the number of objects. Finally, when any of switches SW9−0 is set to the “on” position
the lines between objects should not be drawn; only when all SW switches are set to the “off” position should
the lines appear. You can read the KEY and SW switch settings using either memory-mapped I/O or device
drivers. Character device drivers for these switches were developed in Laboratory Exercise 3.

2. Compile your code and test the new features for changing the animation.

3. Add any other animation features that you may find interesting.

1 . . . include files (not shown)
2
3 volatile sig_atomic_t stop; // used to exit the program cleanly
4 void catchSIGINT(int);
5 struct timespec animation_time; // used to control the animation timing
6
7 . . . declare function prototypes and variables (not shown)
8
9 /***

10 * This program draws Xs and lines on the screen, in an animated fashion.
11 **/
12 int main(void)
13 {
14 . . . declare variables (not shown)
15
16 // catch SIGINT from ^C, instead of having it abruptly close this program
17 signal(SIGINT, catchSIGINT);
18
19 // set random initial position, "delta", and color for all Xs
20 . . . code not shown
21
22 printf ("\033[?25l"); // hide the cursor
23 fflush (stdout);
24
25 // initialize the animation speed
26 animation_time.tv_sec = 0;
27 animation_time.tv_nsec = 200000000; // 0.2 seconds
28 while (!stop)
29 {
30 draw (); // draw the animation
31 nanosleep (&animation_time, NULL); // wait for timer
32 }
33 printf ("\033[2J"); // clear the screen
34 printf ("\e[%2dm\e[%d;%dH", WHITE, min_x, min_y); // reset color and cursor
35 printf ("\e[?25h"); // show the cursor
36 return 0;
37 }
38
39 /* Function to allow clean exit of the program */
40 void catchSIGINT(int signum)
41 {
42 stop = 1;
43 }

Figure 6: Main program for Part IV.

Copyright c© Intel Corporation.

6

