
Laboratory Exercise 11
Implementing Algorithms in Hardware

This is an exercise in using algorithmic state machine charts to implement algorithms as hardware circuits.

Background
Algorithmic State Machine (ASM) charts are a design tool that allow the specification of digital systems in a form
similar to a flow chart. An example of an ASM chart is shown in Figure 1. It represents a circuit that counts
the number of bits set to 1 in an n-bit input A (A = an−1an−2. . .a1a0). The rectangular boxes in this diagram
represent the states of the digital system, and actions specified inside of a state box occur on each active clock
edge in this state. Transitions between states are specified by arrows. The diamonds in the ASM chart represent
conditional tests, and the ovals represent actions taken only if the corresponding conditions are either true (on an
arrow labeled 1) or false (on an arrow labeled 0).

result = 0

right-shift A Done

s

result++

s

a0

A==0

Reset

Load A

0

1

0

0

1

1

0

1

S1

S2 S3

Figure 1: ASM chart for a bit counting circuit.

1



In this ASM chart, state S1 is the initial state. In this state the result is initialized to 0, and data is loaded into
a register A, until a start signal, s, is asserted. The ASM chart then transitions to state S2, where it increments
the result to count the number of 1’s in register A. Since state S2 specifies a shifting operation, then A should be
implemented as a shift register. Also, since the result is incremented, then this variable should be implemented as
a counter. When register A contains 0 the ASM chart transitions to state S3, where it sets an output Done = 1 and
waits for the signal s to be deasserted.

A key distinction between ASM charts and flow charts is a concept known as implied timing. The implied timing
specifies that all actions associated with a given state take place only when the system is in that state when an
active clock edge occurs. For example, when the system is in state S1 and the start signal s becomes 1, then the
next active clock edge performs the following actions: initializes result to 0, and transitions to state S2. The action
right-shift A does not happen yet, because the system is not yet in state S2. For each active clock cycle in state
S2, the actions highlighted in Figure 1 take place, as follows: increment result if bit a0 = 1, change to state S3 if
A = 0 (or else remain in state S2), and shift A to the right.

The implementation of the bit counting circuit includes the counter to store the result and the shift register A, as
well as a finite state machine. The FSM is often referred to as the control circuit, and the other components as the
datapath circuit.

Part I
Write Verilog code to implement the bit-counting circuit using the ASM chart shown in Figure 1 on a DE-series
board. Include in your Verilog code the datapath components needed, and make an FSM for the control circuit.
The inputs to your circuit should consist of an 8-bit input connected to slide switches SW7−0, a synchronous reset
connected to KEY0, and a start signal (s) connected to switch SW9. Use the 50 MHz clock signal provided on the
board as the clock input for your circuit. Be sure to synchronize the s signal to the clock. Display the number of 1s
counted in the input data on the 7-segment display HEX0, and signal that the algorithm is finished by lighting up
LEDR9.

Part II
We wish to implement a binary search algorithm, which searches through an array to locate an 8-bit value A
specified via switches SW7−0. A block diagram for the circuit is shown in Figure 2.

32 x 8

Address

Data_out

Control

Datapath

A7-0 Start Reset

L4-0 Found

 nMemory

Figure 2: A block diagram for a circuit that performs a binary search.

2



The binary search algorithm works on a sorted array. Rather than comparing each value in the array to the one
being sought, we first look at the middle element and compare the sought value to the middle element. If the
middle element has a greater value, then we know that the element we seek must be in the first half of the array.
Otherwise, the value we seek must be in the other half of the array. By applying this approach recursively, we can
locate the sought element in only a few steps.

In this circuit, the array is stored in a memory module that is implemented inside the FPGA chip. A diagram of
the memory module that we need to create is depicted in Figure 3. This memory module has one read port and
one write port, and is called a synchronous random-access memory (synchronous RAM). Note that the memory
module includes registers for synchronously loading addresses, input data, and the Write input. These registers
are required due to the design of the memory resources in the Intel R© FPGA chip. Use the Quartus R© IP Catalog
tool to create the memory module, by clicking on Tools > IP Catalog. In the IP Catalog window choose the
RAM: 1-PORT module, which is found under the Basic Functions > On Chip Memory category. Select Verilog
HDL as the type of output file to create, and give the file the name memory_block.v.

Follow through the provided sequence of dialogs to create a memory that is eight-bits wide and 32 words deep.
Figures 4 and 5 show the relevant pages and how to properly configure the memory.

32 x 8 RAM 8
DataOut

5
Address

8
DataIn

Write

Clock

5

8

Figure 3: The 32 x 8 RAM with address register.

To place data into the memory, you need to specify initial values that should be stored in the memory once your
circuit has been programmed into the FPGA chip. This can be done by initializing the memory using the contents
of a memory initialization file (MIF). The appropriate screen is illustrated in Figure 6. We have specified a file
named my_array.mif, which then has to be created in the folder that contains the Quartus project. An example of
a memory initialization file is given in Figure 7. Set the contents of your MIF file such that it contains a sorted
collection of integers.

3



Figure 4: Specifying memory size.

Figure 5: Specifying which memory ports are registered.

4



Figure 6: Specifying a memory initialization file (MIF).

DEPTH = 32;
WIDTH = 8;
ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;
CONTENT
BEGIN

00 : 01;
01 : 02;
02 : 03
03 : 05;
04 : 06;
05 : 06;
06 : 07;
. . . (some lines not shown)
1E : 1F;
1F : 20;

END;

Figure 7: An example memory initialization file (MIF).

Your circuit should produce a 5-bit output L, which specifies the address in the memory where the number A is
located. In addition, a signal Found should be set high to indicate that the number A was found in the memory,
and set low otherwise.

5



Perform the following steps:

1. Create an ASM chart for the binary search algorithm. Keep in mind that the memory has registers on its
input ports. Assume that the array has a fixed size of 32 elements.

2. Implement the FSM and the datapath for your circuit.

3. Connect your FSM and datapath to the memory block as indicated in Figure 2.

4. Include in your project the necessary pin assignments to implement your circuit on your DE-series board.
Use switch SW9 to drive the Start input, use SW7...0 to specify the value A, use KEY0 for Resetn, and use
the board’s 50 MHz clock signal as the Clock input (be sure to synchronize the Start input to the clock).
Display the address of the data A, if found, on 7-segment displays HEX1 and HEX0, as a hexadecimal
number. Finally, use LEDR9 for the Found signal.

5. Create a file called my_array.mif and fill it with an ordered set of 32 eight-bit integer numbers.

6. Compile your design, and then download and test it.

6



Copyright c© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, En-
pirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in
the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by Intel.
Intel customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

7


	Background
	Part I
	Part II

