
Laboratory Exercise 8
Memory Blocks

In computer systems it is necessary to provide a substantial amount of memory. If a system is implemented
using FPGA technology it is possible to provide some amount of memory by using the memory resources that
exist in the FPGA device. In this exercise we will examine the general issues involved in implementing such
memory.

A diagram of the random access memory (RAM) module that we will implement is shown in Figure 1a. It contains
32 four-bit words (rows), which are accessed using a five-bit address port, a four-bit data port, and a write control
input.

The FPGAs that are included on the Intel R© FPGA DE10-Lite, DE0-CV, DE1-SoC, and DE2-115 boards provide
dedicated memory resources. The MAX R© 10 FPGA on the DE10-Lite, and Cyclone R© IV FPGA on the DE2-115
contain dedicated memory resources called M9K blocks. The Cyclone V FPGA on the DE0-CV and DE1-SoC
boards have M10K blocks. Each M9K block contains 9216 memory bits, while each M10K block contains 10240
memory bits. Both M9K and M10k blocks can be configured to implement memories of various sizes. A common
term used to specify the size of a memory is its aspect ratio, which gives the depth in words and the width in bits
(depth x width). In this exercise we will use an aspect ratio that is four bits wide, and we will use only the first 32
words in the memory. Although the M9K and M10K blocks support many other modes of operation, we will not
discuss them here.

32 x 4 RAM

Write

5
Address

4
Data

(a) RAM organization

32 x 4 RAM 4
DataOut

5
Address

4
DataIn

Write

Clock

5

4

(b) RAM implementation

Figure 1: A 32 x 4 RAM module.

1

There are two important features of the M9K and M10K blocks that have to be mentioned. First, they includes
registers that can be used to synchronize all of the input and output signals to a clock input. The registers on the
input ports must always be used, and the registers on the output ports are optional. Second, the blocks have separate
ports for data being written to the memory and data being read from the memory. Given these requirements, we
will implement the modified 32 x 4 RAM module shown in Figure 1b. It includes registers for the address, data
input, and write ports, and uses a separate unregistered data output port.

Part I
Commonly used logic structures, such as adders, registers, counters and memories, can be implemented in an
FPGA chip by using prebuilt modules that are provided in libraries. In this exercise we will use such a module to
implement the memory shown in Figure 1b.

1. Create a new Quartus R© project to implement the memory module.

2. To open the IP Catalog in the Quartus software click on Tools > IP Catalog. In the IP Catalog window
choose the RAM: 1-PORT module, which is found under the Basic Functions > On Chip Memory cate-
gory. Select VHDL as the type of output file to create, give the file the name ram32x4.vhd, and click OK.
As shown in Figure 2 specify a memory size of 32 four-bit words. Select M9K if your DE-series board
has a MAX 10 or Cyclone IV FPGA, otherwise select M10K. Also on this screen accept the default setting
to use a single clock for the memory’s registers, and then advance to the page shown in Figure 3. On this
page deselect the setting called ’q’ output port under the category Which ports should be registered?.
This setting creates a RAM module that matches the structure in Figure 1b, with registered input ports and
unregistered output ports. Accept defaults for the rest of the settings in the Wizard, and click the Finish
button to exit from this tool. Examine the ram32x4.vhd VHDL file which defines the following subcircuit:

ENTITY ram32x4 IS
PORT (address : IN STD_LOGIC_VECTOR (4 DOWNTO 0);

clock : IN STD_LOGIC := ’1’;
data : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
wren : IN STD_LOGIC ;
q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0));

END ram32x4;

3. Instantiate this subcircuit in a top-level VHDL file that includes appropriate input and output signals for the
memory ports given in Figure 1b.

4. Compile the circuit. Observe in the Compilation Report that the Quartus Compiler uses 128 bits in one of
the FPGA memory blocks to implement the RAM circuit.

5. Simulate the behavior of your circuit using Modelsim and ensure that you can read and write data in the
memory. Use the included testbench file as a baseline for your simulation inputs. An example simulation
output is given in Figure 4.

2

Figure 2: Configuring the size of the memory module.

Figure 3: Configuring input and output ports.

3

Figure 4: An example of simulation output.

Part II
Now, we want to realize the memory circuit in the FPGA on your DE-series board, and use slide switches to load
some data into the created memory. We also want to display the contents of the RAM on the 7-segment displays.

1. Make a new Quartus project which will be used to implement the desired circuit on your DE-series board.

2. Create another VHDL file that instantiates the ram32x4 module and that includes the required input and
output pins on your DE-series board. Use slide switches SW3−0 to provide input data for the RAM, and
use switches switches SW8−4 to specify the address. Use SW9 as the Write signal and use KEY0 as the
Clock input. Show the address value on the 7-segment displays HEX5− 4, show the data being input to the
memory on HEX2, and show the data read out of the memory on HEX0.

3. Test your circuit and make sure that data can be stored into the memory at various locations.

Part III
Instead of creating a memory module subcircuit by using the IP Catalog, we can implement the required memory
by specifying its structure in VHDL code. In a VHDL-specified design it is possible to define the memory as a
multidimensional array. A 32 x 4 array, which has 32 words with 4 bits per word, can be declared by the statement

TYPE mem IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL memory_array : mem;

In an FPGA such an array can be implemented either by using the flip-flops that each logic element contains or,
more efficiently, by using the built-in memory blocks. The Quartus Help provides other examples of VHDL code
that show how memory can be specified (search in the Help for “Inferred memory”).

Perform the following steps:

1. Create a new project which will be used to implement the desired circuit on your DE-series board.

2. Write a VHDL file that provides the necessary functionality, including the ability to load the RAM and read
its contents as was done in Part II.

3. Assign the pins on the FPGA to connect to the switches and the 7-segment displays.

4. Compile the circuit and download it into the FPGA chip.

5. Test the functionality of your design by applying some inputs and observing the output.

4

Part IV
The SRAM block in Figure 1 has a single port that provides the address for both read and write operations. For
this part you will create a different type of memory module, in which there is one port for supplying the address
for a read operation, and a separate port that gives the address for a write operation. Perform the following steps.

1. Create a new Quartus project for your circuit. To generate the desired memory module open the IP Catalog
and select the RAM: 2-PORT module in the Basic Functions > On Chip Memory category. As shown in
Figure 5, choose With one read port and one write port in the category called How will you be using
the dual port ram?

Configure the memory size, clocking method, and registered ports the same way as Part II. As shown in
Figure 6 select I do not care (The outputs will be undefined) for Mixed Port Read-During-Write for
Single Input Clock RAM. This setting specifies that it does not matter whether the memory outputs the
new data being written, or the old data previously stored, in the case that the write and read addresses are
the same during a write operation.

Figure 7 shows how the memory words can be initialized to specific values. It makes use of a feature that
allows the memory module to be loaded with data when the circuit is programmed into the FPGA chip.
As shown in the figure, choose the setting Yes, use this file for the memory content data, and specify
the filename ram32x4.mif. An example of a MIF file is provided in Figure 8. You can also learn about the
format of a memory initialization file (MIF) by using the Quartus Help. You will need to create a MIF file
like the one in Figure 8 to test your circuit. Finish the Wizard and then examine the generated memory
module in the file ram32x4.vhd.

2. Write a VHDL file that instantiates your dual-port memory. To see the RAM contents, add to your design
a capability to display the content of each four-bit word (in hexadecimal format) on the 7-segment display
HEX0. Use a counter as a read address, and scroll through the memory locations by displaying each word
for about one second. As each word is being displayed, show its address (in hex format) on the 7-segment
displays HEX3−2. Use the 50 MHz clock, CLOCK_50, and use KEY0 as a reset input. For the write address
and corresponding data use switches SW8−4 and SW3−0. Show the write address on HEX5−4 and show the
write data on HEX1. Make sure that you properly synchronize the slide switch inputs to the 50 MHz clock
signal.

3. Test your circuit and verify that the initial contents of the memory match your ram32x4.mif file. Make sure
that you can independently write data to any address by using the slide switches.

5

Figure 5: Configuring the two input ports of the RAM.

Figure 6: Configuring the output of the RAM when reading and writing to the same address.

6

Figure 7: Specifying a memory initialization file (MIF).

DEPTH = 32;
WIDTH = 4;
ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;
CONTENT
BEGIN

0 : 0000;
1 : 0001;
2 : 0010;
3 : 0011;
. . . (some lines not shown)
1E : 1110;
1F : 1111;

END;

Figure 8: An example memory initialization file (MIF).

7

Copyright c© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, En-
pirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in
the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by Intel.
Intel customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

8

	Part I
	Part II
	Part III
	Part IV

