
Laboratory Exercise 6
Adders, Subtractors, and Multipliers

The purpose of this exercise is to examine arithmetic circuits that add, subtract, and multiply numbers. Each
circuit will be described in VHDL and implemented on an Intel R© FPGA DE10-Lite, DE0-CV, DE1-SoC, or DE2-
115 board.

Part I
Consider again the four-bit ripple-carry adder circuit used in lab exercise 2; its diagram is reproduced in Figure 1.

+

S

8

8

R

Q

R

Q

0DQ

Overflow

FA

a0b0

s0

FA

c1
a1b1

s1

FA

c2
a2b2

s2

FA

c3
a3b3

s3

carry

a) Four-bit ripple-carry adder circuit

cin

A

S

8

8

R

Q

R

Q

0DQ

Overflow

Clock

cinoverflow

b) Eight-bit registered adder circuit

Figure 1: A four-bit ripple carry adder.

This circuit can be implemented using a ’+’ sign in VHDL. For example, the following code fragment adds n-bit
numbers A and B to produce outputs sum and carry:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
. . .
SIGNAL sum : STD_LOGIC_VECTOR(n-1 DOWNTO 0);
. . .
sum <= A + B;

Use this construct to implement a circuit shown in Figure 2. This circuit, which is often called an accumulator, is
used to add the value of an input A to itself repeatedly. The circuit includes a carry out from the adder, as well as
an overflow output signal. If the input A is considered as a 2’s-complement number, then overflow should be set
to 1 in the case where the output sum produced does not represent a correct 2’s-complement result.

Perform the following steps:

1. Create a new Quartus R© project. Write VHDL code that describes the circuit in Figure 2.

2. Connect input A to switches SW7−0, use KEY0 as an active-low asynchronous reset, and use KEY1 as a
manual clock input. The sum from the adder should be displayed on the red lights LEDR7−0, the registered
carry signal should be displayed on LEDR8, and the registered overflow signal should be displayed on
LEDR9. Show the registered values of A and S as hexadecimal numbers on the 7-segment displays HEX3−2
and HEX1− 0.

1

3. Make the necessary pin assignments needed to implement the circuit on your DE-series board, and compile
the circuit.

4. Use timing simulation to verify the correct operation of the circuit. Once the simulation works properly,
download the circuit onto your DE-series board and test it by using different values of A. Be sure to check
that the overflow output works correctly.

+

S

8

8

R

Q

R

Q

DQ

overflow

FA

a0b0

s0

FA

c1
a1b1

s1

FA

c2
a2b2

s2

FA

c3
a3b3

s3

carry

a) Four-bit ripple-carry adder circuit

cin

A

S

8

8

R

Q

R

Q

Clock

Logic
circuit

carry

0

DQ

Figure 2: An eight-bit accumulator circuit.

Part II
Extend the circuit from Part I to be able to both add and subtract numbers. To do so, introduce an add_sub input
to your circuit. When add_sub is 1, your circuit should subtract A from S, and when add_sub is 0 your circuit
should add A to S as in Part I.

Part III
Figure 3a gives an example of paper-and-pencil multiplication P = A×B, where A = 11 and B = 12.

b0a0

p0p1p2p3p4p6p7 p5

b0a1b0a2b0a3
b1a0b1a1b1a2b1a3

b2a0b2a1b2a2b2a3
b3a0b3a1b3a2b3a3

x
111 0
001 1
000 0

000 0
111 0

111 0
000 1001 0

b) Binary c) Implementation

x
a0a1a2a3
b0b1b2b3

x
1 1
1 2
2 2

1 1
3 21

a) Decimal

Figure 3: Multiplication of binary numbers.

2

We compute P = A×B as an addition of summands. The first summand is equal to A times the ones digit of B.
The second summand is A times the tens digit of B, shifted one position to the left. We add the two summands to
form the product P = 132.

Part b of the figure shows the same example using four-bit binary numbers. To compute P = A×B, we first form
summands by multiplying A by each digit of B. Since each digit of B is either 1 or 0, the summands are either
shifted versions of A or 0000. Figure 3c shows how each summand can be formed by using the Boolean AND
operation of A with the appropriate bit of B.

A four-bit circuit that implements P = A×B is illustrated in Figure 4. Because of its regular structure, this type
of multiplier circuit is called an array multiplier. The shaded areas correspond to the shaded columns in Figure 3c.
In each row of the multiplier AND gates are used to produce the summands, and full adder modules are used to
generate the required sums.

a1

FA ci

ab
co

s

FA ci

ab
co

s

a2 a3

b0

b1

b2

a0

FA ci

ab
co

s

b3

a0

FA ci

ab
co

s

FA ci

ab
co

s

a1 a2

0

FA ci

ab
co

s

a0 a1

0

0

a0

a2

FA ci

ab
co

s

FA ci

ab
co

s

a3

a1

FA ci

ab
co

s

0

a3

FA ci

ab
co

s

a2

FA ci

ab
co

s

a3

FA ci

ab
co

s

p0p1p2p3p4p6p7 p5

Figure 4: An array multiplier circuit.

Perform the following steps to implement the array multiplier circuit:

1. Create a new Quartus project.

2. Generate the required VHDL file. Use switches SW7−4 to represent the number A and switches SW3−0 to
represent B. The hexadecimal values of A and B are to be displayed on the 7-segment displays HEX2 and

3

HEX0, respectively. The result P = A×B is to be displayed on HEX5− 4.

3. Make the necessary pin assignments needed to implement the circuit on your DE-series board, and compile
the circuit.

4. Use simulation to verify your design.

5. Download your circuit onto your DE-series board and test its functionality.

Part IV
In Part III, an array multiplier was implemented using full adder modules. At a higher level, a row of full adders
functions as an n-bit adder and the array multiplier circuit can be represented as shown in Figure 5.

a1

b0

b1

b2

a0

b3

a0

ci

0

a2

co

a1

a3

a2a3

p0p1p2p3p4p6p7 p5

a1 a0a2a3

n-bit Adder
a0b0a1b1b2 a2a3b3

s3 s2 s1 s0

cico n-bit Adder
a0b0a1b1b2 a2a3b3

s3 s2 s1 s0

cico n-bit Adder
a0b0a1b1b2 a2a3b3

s3 s2 s1 s0

0

a1 a0a2a3

0

0

Figure 5: An array multiplier implemented using n-bit adders.

Each n-bit adder adds a shifted version of A for a given row and the partial product of the row above. Abstracting
the multiplier circuit as a sequence of additions allows us to build larger multipliers. The multiplier should consist

4

of n-bit adders arranged in a structure shown in Figure 5. Use this approach to implement an 8 x 8 multiplier
circuit with registered inputs and outputs, as shown in Figure 6.

A

P

8

16

B

R

Q

Clock

Data inputs

D

Q

D

QQ

D

QQ

8

Multiplier

EA EBE E

Figure 6: A registered multiplier circuit.

Perform the following steps:

1. Create a new Quartus project and write the required VHDL file.

2. Use switches SW7−0 to provide the data inputs to the circuit. Use SW9 as the enable signal EA for register A,
and use SW8 as the enable for register B. When SW9 = 1 display the contents of register A on the red lights
LEDR, and display the contents of register B on these lights when SW8 = 1. Use KEY0 as a synchronous
reset input, and use KEY1 as a manual clock signal. Show the product P = A×B as a hexadecimal number
on the 7-segment displays HEX3-0.

3. Make the necessary pin assignments needed to implement the circuit on your DE-series board, and compile
the circuit.

4. Test the functionality of your design by inputting various data values and observing the generated products.

Part V
Part IV showed how to implement multiplication A × B as a sequence of additions, by accumulating the shifted
versions of A one row at a time. Another way to implement this circuit is to perform addition using an adder tree.
An adder tree is a method of adding several numbers together in a parallel fashion. This idea is illustrated in
Figure 7. In the figure, numbers A, B, C, D, E, F , G, and H are added together in parallel. The addition A+B
happens simultaneously with C +D, E +F and G+H . The result of these operations are then added in parallel
again, until the final sum P is computed.

5

CA B D GE F H

P

+

+

+

++++

Figure 7: An example of adding 8 numbers using an adder tree.

In this part you are to implement an 8 x 8 multiplier circuit by using the adder-tree approach. Inputs A and B, as
well as the output P should be registered as in Part IV.

6

Copyright c© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, En-
pirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in
the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by Intel.
Intel customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

7

	Part I
	Part II
	Part III
	Part IV
	Part V

