
Laboratory Exercise 6
Adders, Subtractors, and Multipliers

The purpose of this exercise is to examine arithmetic circuits that add, subtract, and multiply numbers. Each
circuit will be described in VHDL and implemented on an Intel R© FPGA DE10-Lite, DE0-CV, DE1-SoC, or DE2-
115 board.

Part I
Consider again the four-bit ripple-carry adder circuit used in lab exercise 2; its diagram is reproduced in Figure 1.
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Figure 1: A four-bit ripple carry adder.

This circuit can be implemented using a ’+’ sign in VHDL. For example, the following code fragment adds n-bit
numbers A and B to produce outputs sum and carry:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
. . .
SIGNAL sum : STD_LOGIC_VECTOR(n-1 DOWNTO 0);
. . .
sum <= A + B;

Use this construct to implement a circuit shown in Figure 2. This circuit, which is often called an accumulator, is
used to add the value of an input A to itself repeatedly. The circuit includes a carry out from the adder, as well as
an overflow output signal. If the input A is considered as a 2’s-complement number, then overflow should be set
to 1 in the case where the output sum produced does not represent a correct 2’s-complement result.

Perform the following steps:

1. Create a new Quartus R© project. Write VHDL code that describes the circuit in Figure 2.

2. Connect input A to switches SW7−0, use KEY0 as an active-low asynchronous reset, and use KEY1 as a
manual clock input. The sum from the adder should be displayed on the red lights LEDR7−0, the registered
carry signal should be displayed on LEDR8, and the registered overflow signal should be displayed on
LEDR9. Show the registered values of A and S as hexadecimal numbers on the 7-segment displays HEX3−2
and HEX1− 0.
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3. Make the necessary pin assignments needed to implement the circuit on your DE-series board, and compile
the circuit.

4. Use timing simulation to verify the correct operation of the circuit. Once the simulation works properly,
download the circuit onto your DE-series board and test it by using different values of A. Be sure to check
that the overflow output works correctly.
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Figure 2: An eight-bit accumulator circuit.

Part II
Extend the circuit from Part I to be able to both add and subtract numbers. To do so, introduce an add_sub input
to your circuit. When add_sub is 1, your circuit should subtract A from S, and when add_sub is 0 your circuit
should add A to S as in Part I.

Part III
Figure 3a gives an example of paper-and-pencil multiplication P = A×B, where A = 11 and B = 12.
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We compute P = A×B as an addition of summands. The first summand is equal to A times the ones digit of B.
The second summand is A times the tens digit of B, shifted one position to the left. We add the two summands to
form the product P = 132.

Part b of the figure shows the same example using four-bit binary numbers. To compute P = A×B, we first form
summands by multiplying A by each digit of B. Since each digit of B is either 1 or 0, the summands are either
shifted versions of A or 0000. Figure 3c shows how each summand can be formed by using the Boolean AND
operation of A with the appropriate bit of B.

A four-bit circuit that implements P = A×B is illustrated in Figure 4. Because of its regular structure, this type
of multiplier circuit is called an array multiplier. The shaded areas correspond to the shaded columns in Figure 3c.
In each row of the multiplier AND gates are used to produce the summands, and full adder modules are used to
generate the required sums.
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Figure 4: An array multiplier circuit.

Perform the following steps to implement the array multiplier circuit:

1. Create a new Quartus project.

2. Generate the required VHDL file. Use switches SW7−4 to represent the number A and switches SW3−0 to
represent B. The hexadecimal values of A and B are to be displayed on the 7-segment displays HEX2 and
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HEX0, respectively. The result P = A×B is to be displayed on HEX5− 4.

3. Make the necessary pin assignments needed to implement the circuit on your DE-series board, and compile
the circuit.

4. Use simulation to verify your design.

5. Download your circuit onto your DE-series board and test its functionality.

Part IV
In Part III, an array multiplier was implemented using full adder modules. At a higher level, a row of full adders
functions as an n-bit adder and the array multiplier circuit can be represented as shown in Figure 5.
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Figure 5: An array multiplier implemented using n-bit adders.

Each n-bit adder adds a shifted version of A for a given row and the partial product of the row above. Abstracting
the multiplier circuit as a sequence of additions allows us to build larger multipliers. The multiplier should consist
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of n-bit adders arranged in a structure shown in Figure 5. Use this approach to implement an 8 x 8 multiplier
circuit with registered inputs and outputs, as shown in Figure 6.
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Figure 6: A registered multiplier circuit.

Perform the following steps:

1. Create a new Quartus project and write the required VHDL file.

2. Use switches SW7−0 to provide the data inputs to the circuit. Use SW9 as the enable signal EA for register A,
and use SW8 as the enable for register B. When SW9 = 1 display the contents of register A on the red lights
LEDR, and display the contents of register B on these lights when SW8 = 1. Use KEY0 as a synchronous
reset input, and use KEY1 as a manual clock signal. Show the product P = A×B as a hexadecimal number
on the 7-segment displays HEX3-0.

3. Make the necessary pin assignments needed to implement the circuit on your DE-series board, and compile
the circuit.

4. Test the functionality of your design by inputting various data values and observing the generated products.

Part V
Part IV showed how to implement multiplication A × B as a sequence of additions, by accumulating the shifted
versions of A one row at a time. Another way to implement this circuit is to perform addition using an adder tree.
An adder tree is a method of adding several numbers together in a parallel fashion. This idea is illustrated in
Figure 7. In the figure, numbers A, B, C, D, E, F , G, and H are added together in parallel. The addition A+B
happens simultaneously with C +D, E +F and G+H . The result of these operations are then added in parallel
again, until the final sum P is computed.
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Figure 7: An example of adding 8 numbers using an adder tree.

In this part you are to implement an 8 x 8 multiplier circuit by using the adder-tree approach. Inputs A and B, as
well as the output P should be registered as in Part IV.
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