
Laboratory Exercise 8
Using Interrupts with Assembly Language and C code

The purpose of this exercise is to investigate the use of interrupts for the Nios II processor, using both
assembly language and C code. To do this exercise you need to be familiar with the exceptions processing
mechanisms of the Nios II processor. You should also read the parts of the DE0-Nano or DE0-Nano-SoC
Computer documentation that pertain to the use of exceptions and interrupts.

Part I

The main program in Figure 1 consists of an endless loop that comprises a few logical instructions. The
code in this loop does not serve any useful purpose other than to provide a specific set of instructions that
are being executed repeatedly: logical AND, Exclusive-OR, logical OR, and branch. When a pushbutton
KEY is pressed to cause an interrupt, the main program may be executing any of the instructions in the
loop. After this instruction is completed, the processor will branch to the interrupt handler. Figure 2 shows
most of the code for the interrupt handler. It passes to the KEYs interrupt service routine, as a parameter
in register r4, the machine code of the next instruction to be executed in the main program. You have to
write the KEYs interrupt service routine. It should display on the Terminal window of the Monitor Program
which instruction will be executed when the processor returns to the main program. You should use many of
the concepts and subroutines from Exercise 7. An example of output on the Terminal window after several
KEY presses might be:

and
or
br
xor
xor
and
. . .

1



.text

.global start
start:

/* Set up stack pointer*/
· · · code not shown

/* Configure the pushbutton KEYs port to generate interrupts
· · · code not shown
/* Enable IRQ interrupts in the Nios II processor */
· · · code not shown

MAIN LOOP:
and r10, r11, r12
xor r13, r14, r15
or r16, r17, r18
and r18, r17, r16
xor r15, r14, r13
or r12, r11, r10
br MAIN LOOP

.end

Figure 1: Main program for Part I.

Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file, such as part1.s,
and type the assembly language code for the main program into this file.

2. Create any other source code files you may want, and write the code for the EXCEPTION HANDLER
and the subroutine to handle interrupts from a pushbutton key. Set the exception handler to send
interrupts to the Nios II processor from the pushbutton KEYs port.

2



/************************* RESET SECTION *******************************/
.section .reset, ”ax”
movia r2, start
jmp r2 /* branch to main program */

/************************* EXCEPTIONS SECTION *************************/
.section .exceptions, ”ax”
.global EXCEPTION HANDLER

EXCEPTION HANDLER:
subi sp, sp, 20 /* make room on the stack */
stw et, 0(sp)
rdctl et, ctl4
beq et, r0, SKIP EA DEC /* interrupt is not external */
subi ea, ea, 4 /* must decrement ea by one instruction */

/* for external interrupts, so that the */
/* interrupted instruction will be re-run */

SKIP EA DEC:
stw ea, 4(sp) /* save all used registers on the Stack */
stw ra, 8(sp) /* needed if call inst is used */
stw r4, 12(sp)
stw r22, 16(sp)

rdctl et, ctl4
bne et, r0, CHECK LEVEL 1 /* interrupt is an external interrupt */

Figure 2: Exception handlers (Part a).

3



NOT EI: br END ISR /* must be unimplemented instruction or TRAP */
/* instruction; ignored in this code */

CHECK LEVEL 1: /* pushbutton port is interrupt level 1 */
andi r22, et, 0b10
beq r22, r0, END ISR /* other interrupt levels are not handled in this code */

/*load into r4 the machine code of the instruction that will be executed
on the return fromt hsi interrupt service routine*/
call KEY ISR

END ISR: ldw et, 0(sp) /* restore all used register to previous values */
ldw ea, 4(sp)
ldw ra, 8(sp) /* needed if call inst is used */
ldw r4, 12(sp)
ldw r22, 16(sp)
addi sp, sp, 20
eret

.end

Figure 2. The Exception handlers (Part b).

3. To implement the KEYs interrupt service routine, you need to know the Nios II instruction-encodings
that are shown in Figure 3. Part a of the figure gives the encoding of R-Type instructions, which
include and, xor, and or. Figure 3b gives the encoding of I-Type instructions, which includes the br
instruction.

In part a of Figure 3 the A, B and C fields represent the three registers in the operation. The C field
is the destination register, and the A and B fields are the operation registers. For example, an and op-
eration would look like: and rC, rA, rB . For the R-type instructions and, or, xor, the OP field will
always have the value 0x3A. The 11-bit OPX field can be used to differentiate between processing
instructions: it has values 0x1C0 for and, 0x3C0 for xor and 0x2C0 for or. The br instruction is
an I-type instruction, which has the format shown in Figure 3b. The IMM16 field specifies a 16-bit
immediate value. The OP field holds the operation to be performed. The operation code for the br
instruction is 0x06. For the branch instruction, the A and B field can be ignored. For more informa-
tion on OP codes and Nios II instructions, please see the Nios II Instruction Set document.

Hint: Research the difference between the ra and ea registers on the Nios II Processor.

4



(a) Nios II R-Type Instruction format

(b) Nios II I-Type Instruction format

Figure 3: The machine code format.

To display the name of an instruction mnemonic on the Terminal window you may wish to declare
some strings of data as indicated below, and write the characters in these strings to the JTAG UART
that is connected to the Terminal window:

/* .skip is for padding word alignment*/
AND: .string ”and\n”

.skip 3
OR: .string ”or\n”
XOR: .string ”xor\n”

.skip 3
B: .string ”br\n”

4. Make a new Monitor Program project in the folder where you stored your source-code files. In the
Monitor Program screen illustrated in Figure 9, choose Exceptions in the Linker Section Presets
drop-down menu. In the screen of Figure 5, select JTAG UART as the Terminal device. Refer to
Exercise 2, Part IV, for information on using the JTAG UART to communicate with the Monitor
Program’s Terminal window.

5. Compile, download, and test your program.

5



Figure 4: Selecting the Exceptions linker section.

6



Figure 5: Specifying the Terminal device.

Part II

For this part you are to modify your code from Part I so that additional information in displayed on the
Terminal window when a pushbutton KEY is pressed. All of your changes for this part should be done in
the interrupt service routine for the pushbutton KEYs. You should not have to change any other files. For
Part I you were required to display only the mnemonic of the next instruction, such as and or xor, that is to
be executed in the main program on return from an interrupt. For this part you are to extend your solution
so that it also displays the names of the register arguments of each instruction. Use the machine encodings
shown in Figure 3 to find the required information. An example of output produced on the Terminal window
after several KEYs have been pressed might be:

or r12, r11, r10
xor r13, r14, r15
and r10, r11, r12
or r16, r17, r18
and r18, r17, r16
. . .

Part III

Consider the C code shown in Figure 6. It contains an endless loop that repeatedly calls a function named
KEY pressed to see if a pushbutton KEY has been pressed. The function KEY pressed, not shown in the
figure, checks to see if a KEY is currently being pressed. If so, it waits for the KEY to be released and then
returns 1. Otherwise, if no KEY was pressed, 0 is returned. When KEY pressed returns 1, the main program

7



calls a function named doit. This function is supposed to print, on the Terminal window, the mnemonic of
the instruction that will be executed on return from the doit function. In the main program inline assembly
commands are used to insert specific instructions following each call to doit. For example, the first call to
doit is followed by the instruction and r10, r11, r12, the second call to doit is followed by the instruction
xor r13, r14, r15, and so on.

Part of the code for the doit function is given in Figure6. It uses two inline assembly commands. The
command

asm(”ldw r10, 0(ra)” : : : ”r10”)

loads the machine code of the instruction pointed to by the return address register into register r10. The
argument ”r10” in this command informs the C compiler that the contents of register r10 will be changed as
a result of executing the instruction. The command

asm(”mov %0, r10” : ”=r” (machine code) : : )

copies the contents of register r10 into the variable machine code. The argument %0 in this command is set
to whichever register, for example register r11, is chosen by the C compiler to hold the value of the variable
machine code.

Make sure that you understand how the inline assembly commands work. Documentation on these com-
mands can be found by searching on the web for gnu inline assembly Nios II, or something similar.

Perform the following:

1. Type the C code for the main program into a file, for example part3.c. Also, add your own code for
the KEY pressed function.

2. Complete the C code for the doit function. You should display on the Terminal window the mnemonic
of the instruction corresponding to the machine code variable. Refer to Figure 3 for the machine code
formats. Remember from previous exercises that the DE0-Nano and De0-Nano-SoC boards do not
have access to enough memory to use library functions like printf. You should use the functions you
developed in previous exercises (Exercises 6 and 7) to print characters, strings and numbers to the
JTAG terminal window.

Hint: In this example we are not using interrupts, how does this change the use of the ra and ea
registers in terms of accessing the next instruction to be executed in the main function?

3. Make a new Monitor Program project for this part of the exercise. In the Monitor Program screen
shown in Figure 7 set the Terminal device to JTAG UART.

4. Compile, download, and test your program.

8



/* Function prototypes */
int KEY pressed(void);
void doit(void);

/* This program demonstrates the use of inline assembly code in C code */
int main(void)
{

while (1) // endless loop
{

if (KEY pressed ()) doit ();
asm(”and r10, r11, r12”);
if (KEY pressed ()) doit ();
asm(”xor r13, r14, r15”);
if (KEY pressed ()) doit ();
asm(”or r16, r17, r18”);
if (KEY pressed ()) doit ();
asm(”and r18, r17, r16”);
if (KEY pressed ()) doit ();
asm(”xor r15, r14, r13”);
if (KEY pressed ()) doit ();
asm(”or r12, r11, r10”);
if (KEY pressed ()) doit ();

}
}

int KEY pressed( )
{
· · · code not shown

}

void doit( )
{

unsigned int machine code;
// get the machine code of the next instruction on return from this subroutine
asm(”ldw r10, 0(ra)” : : : ”r10”); // read machine code into r10
asm(”mov %0, r10” : ”=r” (machine code) : : ); // copy r10 into variable machine code

· · · code not shown
}

Figure 6: Main program for Part III.

9



Figure 7: Specifying the Terminal device.

Part IV

In this part you are to repeat the tasks given in Parts I and II, but using C code rather than assembly-language
code.

Consider the main program shown in Figure 8. The main program calls the subroutine config KEYs() to ini-
tialize the pushbutton KEYs port so that it will generate interrupts. Finally, a subroutine enable nios2 interrupts()
is called to unmask IRQ interrupts in the Nios II processor.

After completing the initialization steps described above, the main program executes an endless loop that
consists of several logical instructions. Inline assembly commands, described in Part III, are used to specify
the logic instructions.

Perform the following:

10



int main(void)
{

config KEYs (); // configure pushbutton KEYs to generate interrupts

enable nios2 interrupts (); // enable interrupts in the Nios II processor

while (1) // wait for an interrupt
{

asm(”and r10, r11, r12”);
asm(”xor r13, r14, r15”);
asm(”or r16, r17, r18”);
asm(”and r18, r17, r16”);
asm(”xor r15, r14, r13”);
asm(”or r12, r11, r10”);

}
}

/* Set up the pushbutton KEYs port in the FPGA */
void config KEYs(void)
{
· · · code not shown

}
/* Turn on interrupts in the Nios II processor */
void enable nios2 interrupts(void)
{
· · · code not shown

}

Figure 8: Main program for Part IV.

1. Create a new folder to hold your Monitor Program project for this part. Create a file, such as part1.c,
for your main program, and create any other source-code files that you may wish to use. Write the
code for the subroutines that are called by the main program.

2. Use the exception handler code you created for Exercise 7 which called the interrupt handler, and in
turn called the pushbutton ISR() function. You should not need to change the exception handler or
interrupt handler code you wrote, you should only need to change the functionality of the pushbut-
ton ISR() function.
Your code should perform the same task as in Part II of this exercise. That is, you are to print on
the Terminal window the mnemonic, and register indices, of the instruction that will be executed on
return from the interrupt. You can make the same assumptions as in Parts I and II, namely that only
the logical instructions, plus the branch instruction, have to be handled by your code

3. Make a new Monitor Program project in the folder where you stored your source-code files. As
discussed for Part III, in the Monitor Program screen shown in Figure 7 set the Terminal device
to JTAG UART. Also, in the Monitor Program screen illustrated in Figure 9, make sure to choose
Exceptions in the Linker Section Presets drop-down menu.

11



4. Compile, download, and test your program.

Figure 9: Selecting the Exceptions linker section.

12



Copyright c© 1991-2016 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

13


