
Laboratory Exercise 7
Using Interrupts with C code

The purpose of this exercise is to investigate the use of interrupts for the Nios II processor, using C code.
To do this exercise you need to have a good working knowledge of the exceptions processing mechanisms
of the Nios II processor. You should also be familiar with the parts of the DE0-Nano-SoC or DE0-Nano
Computer documentation that pertain to the use of exceptions and interrupts with C code.

This exercise involves the same tasks as those given in Exercise 5, except that this exercise uses C code
rather than assembly-language code.

Part I

Consider the main program shown in Figure 1. The program calls a subroutine config_KEYs() to initialize
the pushbutton KEYs port so that it will generate interrupts, and calls a subroutine enable_nios2_interrupts()
to enable interrupts in the Nios II processor. You are to fill in the missing code for the subroutines. To enable
interrupts the main program includes macros, in the file "nios2_ctrl_reg_macros.h", which provide access
to the Nios II status and control registers. Examples of useful macros that might be included are provided
in Figure 2.

After completing the initialization steps described above, the main program just “idles” in an endless loop.
The purpose of the program is to toggle the state of the LED0 and LED1, when a corresponding pushbutton
KEY is pressed. Since the main program only idles in a loop, the displays have to be controlled by using
an interrupt service routine for the pushbutton KEYs port. If you are using the DE0-Nano board, KEY0 is
hardwired as a reset to the Nios II processor, and therefore it is not possible to generate interrupts using that
key.

1. Create a new folder to hold your Monitor Program project for this part. Create a file, such as part1.c,
for your main program, and create any other source-code files that you may wish to use. Write the
code for the subroutines that are called by the main program. Be sure to enable Nios II interrupts for
the pushbutton KEYs port.

2. The reset and exception handlers for the main program are given in Figure 3. The function called
the_reset provides a simple reset mechanism by performing a branch to the main program. The
function named the_exception represents a general exception handler that can be used with any C
program. It includes assembly language code to check if the exception is caused by an external
interrupt, and, if so, calls a C language routine named interrupt_handler. This routine can then
perform whatever action is needed for the specific application. In Figure 3, the interrupt_handler
code first determines which exception has occurred, by using a macro from Figure 2 that reads the
content of the Nios II interrupt pending register.

1

You have to write the code for the pushbutton_isr() interrupt service routine. Your code should light
up LED1 when KEY1 is pressed, and then if KEY1 is pressed again, LED1 should be turned off. You
should toggle the LED1 display between on and off in this manner each time. If you are using the
DE0-Nano-SoC board, the same should be done for KEY0 and LED0.

3. Make a new Monitor Program project in the folder where you stored your source-code files. In the
Monitor Program screen illustrated in Figure 4, make sure to choose Exceptions in the Linker Section
Presets drop-down menu.

4. Compile, download, and test your program.

#include "nios2_ctrl_reg_macros.h"

int main(void)
{

config_KEYs (); // configure pushbutton KEYs to generate interrupts
enable_nios2_interrupts (); // enable interrupts in the Nios II processor

while (1) // wait for an interrupt
;

}

/* Set up the pushbutton KEYs port in the FPGA */
void config_KEYs(void)
{

. . . code not shown
}

/* Enable interrupts in the Nios II processor */
void enable_nios2_interrupts(void)
{

. . . code not shown
}

Figure 1: Main program for Part I.

2

#ifndef __NIOS2_CTRL_REG_MACROS__
#define __NIOS2_CTRL_REG_MACROS__
/* Macros for accessing the control registers */

#define NIOS2_READ_STATUS(dest) \
do { dest = __builtin_rdctl(0); } while (0)

#define NIOS2_WRITE_STATUS(src) \
do { __builtin_wrctl(0, src); } while (0)

#define NIOS2_READ_ESTATUS(dest) \
do { dest = __builtin_rdctl(1); } while (0)

#define NIOS2_READ_BSTATUS(dest) \
do { dest = __builtin_rdctl(2); } while (0)

#define NIOS2_READ_IENABLE(dest) \
do { dest = __builtin_rdctl(3); } while (0)

#define NIOS2_WRITE_IENABLE(src) \
do { __builtin_wrctl(3, src); } while (0)

#define NIOS2_READ_IPENDING(dest) \
do { dest = __builtin_rdctl(4); } while (0)

#define NIOS2_READ_CPUID(dest) \
do { dest = __builtin_rdctl(5); } while (0)

#endif

Figure 2: Macros for accessing Nios II status and control registers.

#include "nios2_ctrl_reg_macros.h"

/* function prototypes */
void main(void);
void interrupt_handler(void);
void pushbutton_ISR(void);

/* The assembly language code below handles Nios II reset processing */
void the_reset (void) __attribute__ ((section (".reset")));
void the_reset (void)
/***
* Reset code; by using the section attribute with the name ".reset" we allow the linker program
* to locate this code at the proper reset vector address. This code just calls the main program
**/

{
asm (".set noat"); // magic, for the C compiler
asm (".set nobreak"); // magic, for the C compiler
asm ("movia r2, main"); // call the C language main program
asm ("jmp r2");

}

Figure 3: Reset and exception handler C code (Part a).

3

/* The assembly language code below handles Nios II exception processing. This code should not be
* modified; instead, the C language code in the function interrupt_handler() can be modified as
* needed for a given application. */

void the_exception (void) __attribute__ ((section (".exceptions")));
void the_exception (void)
/***
* Exceptions code; by giving the code a section attribute with the name ".exceptions" we allow
* the linker to locate this code at the proper exceptions vector address. This code calls the
* interrupt handler and later returns from the exception.
**/

{
asm (".set noat"); // magic, for the C compiler
asm (".set nobreak"); // magic, for the C compiler
asm ("subi sp, sp, 128");
asm ("stw et, 96(sp)");
asm ("rdctl et, ctl4");
asm ("beq et, r0, SKIP_EA_DEC"); // interrupt is not external
asm ("subi ea, ea, 4"); /* must decrement ea by one instruction for external

* interrupts, so that the instruction will be run */
asm ("SKIP_EA_DEC:");
asm ("stw r1, 4(sp)"); // save all registers
asm ("stw r2, 8(sp)");
. . .
. . . (save all regs, except for r27 (sp))
. . .
asm ("stw r31, 124(sp)"); // r31 = ra
asm ("addi fp, sp, 128");

asm ("call interrupt_handler"); // call the C language interrupt handler

asm ("ldw r1, 4(sp)"); // restore all registers
asm ("ldw r2, 8(sp)");
. . .
. . . (restore all saved regs) */
. . .
asm ("ldw r31, 124(sp)"); // r31 = ra

asm ("addi sp, sp, 128");
asm ("eret");

}

Figure 3. Reset and exception handler C code (Part b).

4

/**
* Interrupt Service Routine: Determines the interrupt source and calls the appropriate subroutine
***/

void interrupt_handler(void)
{

int ipending;
NIOS2_READ_IPENDING(ipending);
if (ipending & 0x2) // pushbuttons are interrupt level 1

pushbutton_ISR();
// else, ignore the interrupt
return;

}

Figure 3. Reset and exception handler C code (Part c).

Figure 4: Selecting the Exceptions linker section.

5

Part II

Consider the main program shown in Figure 5. The code is required to set up interrupts from two sources:
the Interval Timer and the pushbutton KEYs port. The main program calls the subroutines config_timer()
and config_KEYS() to set up the two ports. You are to write each of these subroutines. Set up the Interval
Timer to generate one interrupt every 0.25 seconds.

In Figure 5 the main program executes an endless loop writing the value of the global variable count to the
green lights LED. In the interrupt service routine for the Interval Timer you are to increment the variable
count by the value of the run global variable, which should be either 1 or 0. You are to toggle the value of
the run global variable in the interrupt service routine for the pushbutton KEYs, each time a KEY is pressed.
When run = 0, the main program will display a static count on the red lights, and when run = 1, the count
shown on the red lights will increment every 0.25 seconds. Make a new Monitor Program project for this
part, and assemble, download, and test your code.

int count = 0; // global counter for red lights
int run = 1; // global, used to increment/not the count variable

int main(void)
{

volatile int * LED_ptr = (int *) /*insert green LED address here*/;

config_timer (); // configure interval timer
config_KEYs (); // configure pushbutton KEYs to generate interrupts
enable_nios2_interrupts (); // enable interrupts in the Nios II processor

while (1) // wait for an interrupt
*LED_ptr = count;

}

/* Set up timer */
void config_timer()
{
· · · code not shown

}
/* Set up the pushbutton KEYs port in the FPGA */
void config_KEYs()
{
· · · code not shown

}
/* Turn on interrupts in the Nios II processor */
void enable_nios2_interrupts()
{
· · · code not shown

}

Figure 5: Main program for Part II.

6

Part III

Modify your program from Part II so that you can vary the speed at which the counter displayed on the
green lights is incremented. All of your changes for this part should be made in the interrupt service routine
for the pushbutton KEYs. The main program and the rest of your code should not be changed.

Implement the following behavior. When KEY1 is pressed, check the status of switches 0 and 1 (SW0 and
SW1). If SW1 is high (a value of 1), you should toggle the run variable, similar to Part II. If SW1 is low
(a value of 0), you should check the status of SW0. If SW0 is high, the rate at which the count variable is
incremented should be doubled, and if SW0 is low, the rate should be halved. You should implement this
feature by stopping the Interval Timer within the pushbutton KEYs interrupt service routine, modifying the
load value used in the timer, and then restarting the timer.

Part IV

For this part you are to create a real-time clock that is shown on the JTAG UART terminal window. Set up an
interval timer to provide an interrupt every 1/100 of a second. Use this timer to increment a global variable
called time. You should use the time variable as your real time clock. Use the format MM:SS:DD, where
MM are minutes, SS are seconds and DD are hundredths of a second. When the clock reaches 59:59:99,
it should wrap around to 00:00. You should be able to reuse the functions written in Example 6 to display
characters, strings and numbers on the JTAG UART terminal (remember the Nios II processor(s) on the
DE0-Nano and DE0-Nano-SoC boards do not have access to enough memory for library functions like
printf). Since you cannot update the Terminal window at the rate of 1/100 seconds (the communication
speed with the Terminal is too slow), you should display the current time, only when a pushbutton KEY is
pressed.

Make a new folder to hold your Monitor Program project for this part. Write the program for the real-time
clock. To show the TIME variable in the real-time clock format MM:SS, you can use the same approach
that was followed for Part 4 of Lab Exercise 4. In that previous exercise you used polled I/O with the
Interval Timer, whereas now you are using interrupts. One possible way to structure your code is illustrated
in Figure 6.

Using the scheme in Figure 6, the interrupt service routine for Interval Timer has to increment the TIME
variable.

Make a new Monitor Program project and test your code.

7

int time = 0; // global, used for real-time clock

int main(void)
{

config_timer (); // configure the Interval Timer
config_KEYs(); // configure pushbutton KEYS
enable_nios2_interrupts (); // enable interrupts in the Nios II processor

// wait for an interrupt
while (1)
{

/*show the time in the format MM:SS:DD, if a key has been pressed*/
}

/* Set up the Interval Timer */
void config_timer()
{
· · · code not shown

}

Figure 6: Main program for Part IV.

8

Copyright c© 1991-2016 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

9

	Part I
	Part II
	Part III
	Part IV

