
Laboratory Exercise 5
Using Interrupts with Assembly Code

The purpose of this exercise is to investigate the use of interrupts for the Nios II processor, using assembly
language code. To do this exercise you need to be familiar with the exceptions processing mechanisms for
the Nios II processor, which are discussed in the tutorial Nios II Introduction, available at the Intel FPGA
University Program website. You should also read the information on exceptions and interrupts of the DE0-
Nano-SoC or DE-Nano Computer, depending on the board you are using.

Part I

Consider the main program shown in Figure 1. The main program needs to set up the stack pointer, configure
the pushbutton KEYs port to generate interrupts, and then enable interrupts in the Nios II processor. You
are to fill in the code that is not shown in the figure.

The function of your program is to turn on/off the green lights LED1 and LED0 when a corresponding
pushbutton KEY1 or KEY0 is pressed. Since the main program simply “idles” in an endless loop, as shown
in Figure 1, you have to control the LEDs by using an interrupt service routine for the pushbutton KEYs.

Perform the following:

1. Create a new folder to hold your files for this part. Create a file, such as part1.s, and copy the assembly
language code for the main program, given in Figure 1, into this file. Create a file exception handler.s,
and copy the code given in Figure 2 into it. Create any other source-code files that you need.

2. Figure 2 gives the code required for the Nios II reset and exceptions handlers. The exception handler
calls a subroutine KEY ISR to handle interrupts from the KEY pushbuttons. Create a file key isr.s and
write the code for the KEY ISR interrupt service routine. Your code should turn on LED1 display
when KEY1 is pressed, and then if KEY1 is pressed again, LED1 should be turned off . You should
toggle LED1 on and off each time KEY1 is pressed. If you are using the DE0-Nano-SoC board, you
should toggle LED0 when KEY0 is pressed, the same as when KEY1 is pressed. Note that KEY0 is
not available on the DE0-Nano board as it is hardwired to reset the processor.

3. Make a new Monitor Program project in the folder where you stored your source-code files. In the
Monitor Program screen illustrated in Figure 3, make sure to choose Exceptions in the Linker Section
Presets drop-down menu. Compile, download, and test your program.

1

.text

.global start
start:

/* set up the stack */
· · · code not shown

/* write to the pushbutton port interrupt mask register */
· · · code not shown

/* enable Nios II processor interrupts */
· · · code not shown

IDLE: br IDLE /* main program simply idles */
.end

Figure 1: Main program for Part 1.

/************************* RESET SECTION *******************************/
.section .reset, ”ax”
movia r2, start
jmp r2 /* branch to main program */

/************************* EXCEPTIONS SECTION *************************/
.section .exceptions, ”ax”
.global EXCEPTION HANDLER

EXCEPTION HANDLER:
subi sp, sp, 16 /* make room on the stack */
stw et, 0(sp)
rdctl et, ctl4
beq et, r0, SKIP EA DEC /* interrupt is not external */
subi ea, ea, 4 /* must decrement ea by one instruction */

/* for external interrupts, so that the */
/* interrupted instruction will be re-run */

SKIP EA DEC:
stw ea, 4(sp) /* save all used registers on the Stack */
stw ra, 8(sp) /* needed if call inst is used */

stw r22, 12(sp)
rdctl et, ctl4
bne et, r0, CHECK LEVEL 1 /* interrupt is an external interrupt */

Figure 2: Exception handlers (Part a).

2

NOT EI: br END ISR /* must be unimplemented instruction or TRAP */
/* instruction; ignored in this code */

CHECK LEVEL 1: /* pushbutton port is interrupt level 1 */
andi r22, et, 0b10
beq r22, r0, END ISR /* other interrupt levels are not handled in this code */
call KEY ISR

END ISR: ldw et, 0(sp) /* restore all used register to previous values */
ldw ea, 4(sp)
ldw ra, 8(sp) /* needed if call inst is used */
ldw r22, 12(sp)
addi sp, sp, 16
eret

.end

Figure 2. Exception handlers (Part b).

Part II

Consider the main program shown in Figure 4. The code is required to set up the Nios II stack pointers
and then enable interrupts. The main program calls the subroutines CONFIG TIMER and CONFIG KEYS
to set up the two ports. You are to write each of these subroutines. Set up the Interval Timer to generate one
interrupt every 0.25 seconds.

In Figure 4 the main program executes an endless loop writing the value of the global variable COUNT to
the green lights LED. In the interrupt service routine for Interval Timer you are to increment the variable
COUNT by the value of the RUN global variable, which should be either 1 or 0. You are to toggle the value
of the RUN global variable in the interrupt service routine for the pushbutton KEYs, each time a KEY is
pressed. When RUN = 0, the main program will display a static count on the green lights, and when RUN =
1, the count shown on the green lights will increment every 0.25 seconds.

Make a new Monitor Program project for this part, and assemble, download, and test your code.

Part III

Modify your program from Part II so that you can vary the speed at which the counter displayed on the
green lights is incremented. All of your changes for this part should be made in the interrupt service routine
for the pushbutton KEYs. The main program and the rest of your code should not be changed.

Implement the following behavior. When KEY0 is pressed, the value of the RUN variable should be toggled,
as in Part II. Hence, pressing KEY0 stops/runs the incrementing of the COUNT variable. Note that this can

3

Figure 3: Selecting the Exceptions linker section.

only be done on the DE0-Nano-SoC board, and not on the DE0-Nano board. If you are using the DE0-Nano
board, ignore this instruction. For either then DE0-Nano and De0-Nano-SoC boards, when SW0 is high and
KEY1 is pressed, the rate at which COUNT is incremented should be doubled, and when SW0 is low and
KEY1 is pressed the rate should be halved. You should implement this feature by stopping the Interval Timer
within the pushbutton KEYs interrupt service routine, modifying the load value used in the timer, and then
restarting the timer.

Part IV

For this part you are to display the current count as a clock. Set up the timer to provide one interrupt
each second. Use this timer to increment a global variable called COUNT. You should use the COUNT vari-
able as a real-time clock that is shown on the Monitor Program Terminal window. Use the format MM:SS,
where MM are minutes and SS are seconds. You should be able to stop/run the clock by pressing KEY1.
When the clock reaches 59:59, it should wrap around to 00:00.

Make a new folder to hold your Monitor Program project for this part. To show the TIME variable in the
real-time clock format MM:SS, you can use the approach that was followed for Part IV of Lab Exercise 4.
In Lab Exercise 4 you used polled I/O with the interval timer, whereas now you are using interrupts. The
interrupt service routine for the timer should display the real-time clock on the Terminal window.

4

.text

.global start
start:

/* set up the stack */
· · · code not shown

call CONFIG TIMER
call CONFIG KEYS

/* enable Nios II processor interrupts */
· · · code not shown

movia r8, /* insert green lights LED base address */
LOOP: ldw r9, COUNT(r0) /* global variable */

stw r9, (r8)
br LOOP

/* Configure the interval timer to create interrupts at 0.25 second intervals */
CONFIG TIMER:

· · · code not shown
ret

/* Configure the pushbutton KEYS to generate interrupts */
CONFIG KEYS:

· · · code not shown
ret

/* Global variables */
.global COUNT

COUNT: .word 0x0 # used by timer
.global RUN # used by pushbutton KEYs

RUN: .word 0x1 # initial value to increment COUNT

.end

Figure 4: Main program for Part II.

5

Make a new Monitor Program project and test your program. In the screen shown in Figure 5, make sure
to select JTAG UART as the Terminal device. Without this setting no character output will appear on the
Terminal window when your code writes to the JTAG UART.

Figure 5: Specifying the Terminal device.

As a final exercise, add to your program the ability to slow down/speed up the timer, in the same way that
you implemented this capability for the Interval Timer in Part III of this exercise. Observe the behavior of
the Terminal window as it displays the real-time clock value at various timer rates. Discuss any anomolous
behavior that you observe.

6

Copyright c© 1991-2016 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

7

