
Laboratory Exercise 2
Using Logic Instructions with the ARM Processor

Logic instructions are needed in many embedded applications. Logic instructions are useful for manipula-
tion of bit strings and for dealing with data at the bit level where only a few bits may be of special interest.
They are essential in dealing with input/output tasks. In this exercise we will consider some typical uses.
We will use the Nios II Soft processor in the DE0-Nano or DE0-Nano-SoC Computer.

Part I

In this part you will implement a Nios II assembly language program that counts the longest string of
1’s in a word of data. For example, if the word of data is 0x103fe00f, then the required result is 9.

Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file called part1.s,
and type the assembly language code shown in Figure 1 into this file. This code uses an algorithm
involving shift and AND operations to find the required result—make sure that you understand how
this works.

2. Make a new Monitor Program project in the folder where you stored the part1.s file. Use the computer
that corresponds to your board, either the DE0-Nano Computer or DE0-Nano-SoC Computer for this
project.

3. Compile and load the program. Fix any errors that you encounter (if you mistyped some of the code).
Once the program is loaded into memory in the computer, single step through the code to see how the
program works.

Part II

Perform the following.

1. Make a new folder and make a copy of the file part1.s in that new folder. Give the new file a name
such as part2.s.

2. In the new file part2.s, take the code which calculates the number of consecutive 1’s and make it into
a subroutine called ONES. Have the subroutine use register r3 to receive the input data and register
r2 for returning the result.

3. Add more words in memory starting from the label TEST NUM. You can add as many words as you
like, but include at least 10 words. To terminate the list include the word 0 at the end—check for this
0 entry in your main program to determine when all of the items in the list have been processed.

1



4. In your main program, call the newly-created subroutine in a loop for every word of data that you
placed in memory. Keep track of the longest string of 1’s in any of the words, and have this result in
register r15 when your program completes execution.

5. Make sure to use breakpoints or single-stepping in the Monitor Program to observe what happens
each time the ONES subroutine is called.

/* Program that counts consecutive 1’s */
.text
.global start

start:
movia r10, TEST NUM #load the data word into r10
ldw r10, 0(r10)
movi r15, 0 #r15 will hold the result

LOOP: beq r10, r0, END #loop until the data contains no more 1’s
srli r11, r10, 1 #perform SHIFT LEFT , followed by AND
and r10, r10, r11
addi r15, r15, 1 #count length so far
br loop

END: br end

TEST NUM: .word 0x103fe00f

.end

Figure 1: Assembly-language program that finds the largest string of 1’s.

Part III

One might be interested in the longest string of 0’s, or even the longest string of alternating 1’s and 0’s.
For example, the binary number 101101010001 has a string of 6 alternating 1’s and 0’s.

Write a new assembly language program that determines the following:

• Longest string of 1’s in a word of data—put the result into register R5

• Longest string of 0’s in a word of data—put the result into register R6

• Longest string of alternating 1’s and 0’s in a word of data—put the result into register R7 (Hint: What
happens when an n-bit number is XORed with an n-bit string of alternating 0’s and 1’s?)

Make each calculation in a separate subroutine called ONES, ZEROS, and ALTERNATE. Call each of these
subroutines in the loop that you wrote in Part III, and keep track of the largest result for each calculation,
from your list of data.

2



Part IV

In this part you are to extend your code from Part III so that the results produced are shown on the Ter-
minal window of the Aardvark Monitor Program. Each result should be displayed as a two-digit decimal
number preceded by the name of the register the number corresponds to. You may want to use the approach
discussed in Part IV of Exercise 1 to convert the numbers in registers R5, R6, and R7 from binary to decimal.

The DE0-Nano and DE0-Nano SoC Computers can communicate with the Aardvark Monitor Program’s
Terminal through the JTAG UART. The programming interface of the JTAG UART consists of two 32-bit
registers, as shown in Figure 2. On the DE0-Nano-SoC, the register mapped to address 0xFF201000 is
called the Data register and the register mapped to address 0xFF201004 is called the Control register. On
the DE0-Nano, these registers are mapped to 0x10001000 and 0x10001004 respectively. The following
code examples will use the DE0-Nano-SoC as an example. If you are using a DE0-Nano, simply change
the base address from 0xFF201000 to 0x10001000.

The JTAG UART includes a 64-character FIFO that stores data waiting to be transmitted to the host com-
puter. ASCII character data is loaded into this FIFO by performing a write to bits 7-0 of the Data register in
Figure 2. Note that writing into this register has no effect on received data. The amount of space, WSPACE,
currently available in the transmit FIFO is provided in bits 31-16 of the Control register. If the transmit
FIFO is full, then any characters written to the Data register will be lost. A subroutine that transmits a
character to the host computer is shown in Figure 3.

Address 0731 16. . .

0xFF201000 

0xFF201004 

DATARAVAIL

14 8. . . . . .

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 2: The JTAG UART Programming Interface for the DE0-Nano-SoC.

An example of code that shows the contents of registers on the Terminal window is illustrated in Figure 4.
The code in the figure shows only the steps needed to display the contents of register r15 on the Terminal.
Extend the code to display the contents of all three registers.

/********************************************************************************
* Subroutine to send a character to the JTAG UART
* r3 = character to send

********************************************************************************/
PUT JTAG: movia r10, 0xFF201000 #DE0-Nano-SoC JTAG UART base address

stw r3, 0(r10) #send the character
END PUT: ret

Figure 3: A subroutine that sends an ASCII character to the Monitor Program Terminal.

3



· · ·
code for Part III (not shown)
· · ·
/* Display r15, r16 and r17 on the Terminal */
DISPLAY: movia r3, PRINT R15

call PRINT STR #print the string

SHOW R5: mov r10, r15 #display content of r15 on the Terminal
call PRINT REG #print the decimal digits
· · ·
code for printing “r16:” and decimal value of r16 (not shown)
· · ·
code for printing “r17:” and decimal value of r17 (not shown)
· · ·

/* Subroutine to send a null-terminated string to the JTAG UART
* input: r3 contains the address of the string */

PRINT STR: movia r6, 0xFF201000 #DE0-Nano-SoC JTAG UART base address
JTAG LOOP: ldb r2, 0(r3) #get the next character

· · ·
END PRINT: ret

/* Subroutine to ”print” the decimal value of a register to the JTAG Terminal
* input: r3 is the register to be converted to decimal and displayed */

PRINT REG: mov r19, ra #save return address
call DIVIDE #ones digit will be in r2; tens digit in r3
movia r6, 0xFF201000 #DE0-Nano-SoC JTAG UART base address
· · ·
mov ra, r19 #restore return address

· · ·

PRINT R15: .asciz ”r15: ”
.skip 2 // pad with 2 bytes to maintain word alignment

PRINT R16: .asciz ”r16: ”
.skip 2 // pad with 2 bytes to maintain word alignment

PRINT R17: .asciz ”r17: ”
.skip 2 // pad with 2 bytes to maintain word alignment

Figure 4: A code fragment for showing registers in decimal on the Terminal window.

4



For your Monitor Program project for this part, in the screen shown in Figure 5, make sure to select
JTAG UART as the Terminal device. Without this setting no character output will appear on the Termi-
nal window when your code writes to the JTAG UART.

Figure 5: Specifying the Terminal device.

5



Copyright c© 1991-2016 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

6


