
Laboratory Exercise 8
Using Interrupts with Assembly Language and C code

The purpose of this exercise is to investigate the use of interrupts for the ARM A9 processor, using both
assembly language and C code. To do this exercise you need to be familiar with the exceptions process-
ing mechanisms of the ARM processor, and with the operation of the ARM Generic Interrupt Controller
(GIC). These concepts are discussed in the tutorials Introduction to the ARM Processor, and Using the ARM
Generic Interrupt Controller. You should also read the parts of the DE0-Nano-SoC Computer documenta-
tion that pertain to the use of exceptions and interrupts.

Part I

Consider the main program shown in Figure 1. The code first specifies the exceptions vector table for
the ARM processor using a code section called .vectors. Only the IRQ vector is set up for this program.
The .word Assembler directive is used to create placeholders (0’s) for all of the vectors except IRQ, which
is set to branch to an interrupt service routine called SERVICE IRQ. In the .text section of the main pro-
gram the stack pointers, for both interrupt mode and supervisor mode, are initialized, the generic interrupt
controller (GIC) is configured, and the pushbutton KEYs port is set up to generate interrupts. Finally, the
main program enables interrupts in the processor. You are to fill in the code that is not shown in the figure.

The main program in Figure 1 consists of an endless loop that comprises a few logical instructions. The
code in this loop does not serve any useful purpose other than to provide a specific set of instructions that
are being executed repeatedly: logical AND, Exclusive-OR, logical OR, and branch. When a pushbutton
KEY is pressed to cause an interrupt, the main program may be executing any of the instructions in the
loop. After this instruction is completed, the processor will branch to the interrupt handler. Figure 2 shows
most of the code for the interrupt handler. It passes to the KEYs interrupt service routine, as a parameter
in register R0, the machine code of the next instruction to be executed in the main program. You have to
write the KEYs interrupt service routine. It should display on the Terminal window of the Monitor Program
which instruction will be executed when the processor returns to the main program. An example of output
on the Terminal window after several KEY presses might be:

AND
ORR
B
EOR
EOR
AND
. . .

1

.section .vectors, ”ax”

.word 0 // reset vector

.word 0 // undefined instruction vector

.word 0 // software interrrupt vector

.word 0 // aborted prefetch vector

.word 0 // aborted data vector

.word 0 // unused vector
B SERVICE IRQ // IRQ interrupt vector
.word 0 // FIQ interrupt vector

.text

.global start
start:

/* Set up stack pointers for IRQ and SVC processor modes */
· · · code not shown
BL CONFIG GIC // configure the ARM generic interrupt controller

/* Configure the pushbutton KEYs port to generate interrupts
· · · code not shown
/* Enable IRQ interrupts in the ARM processor */
· · · code not shown

MAIN LOOP:
AND R0, R1, R2
EOR R3, R4, R5
ORR R6, R7, R8
AND R8, R7, R6
EOR R5, R4, R3
ORR R2, R1, R0
B MAIN LOOP

.end

Figure 1: Main program and interrupt service routine.

Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file, such as part1.s,
and type the assembly language code for the main program into this file.

2. Create any other source code files you may want, and write the code for the CONFIG GIC subroutine
that initializes the GIC. Set up the GIC to send interrupts to the ARM processor from the pushbutton
KEYs port.

3. To implement the KEYs interrupt service routine, you need to know the ARM instruction-encodings
that are shown in Figure 3. Part a of the figure gives the encoding of data processing instructions,
which include AND, EOR, and ORR, and Figure 3b displays the encoding of branch instructions. For
all of the relevant instructions used here the Cond field will have the value 1110, which represents
the condition always. In part a of Figure 3 the I field indicates an immediate operand. This field

2

/* Define the IRQ exception handler */
SERVICE IRQ: PUSH {R0-R7, LR}

LDR R4, =0xFFFEC100 // GIC CPU interface base address
LDR R5, [R4, #0x0C] // read the ICCIAR in the CPU interface

CHECK KEYS: CMP R5, #73 // check the interrupt ID
UNEXPECTED: BNE UNEXPECTED // if not recognized, stop here

/* load into register R0 the machine code of the instruction that will be
executed on return from this interrupt service routine */

· · · code not shown
BL KEY ISR

EXIT IRQ: STR R5, [R4, #0x10] // write to the End of Interrupt Register

POP {R0-R7, LR}
SUBS PC, LR, #4 // return from exception

.end

Figure 2: The IRQ Exception handler.

is 1 if Operand2 is an immediate constant, otherwise 0. The OpCode field specifies the type of data
processing instruction: it has the values 0000 for AND, 0001 for EOR and 1100 for ORR. The S
bit is 1 if the instruction modifies the condition codes, otherwise 0. Fields Rn and Rd specify the first
operation register and destination register, respectively. Field Operand2 specifies the flexible second
operand. When a register is used for this operand, it is identified in bits 3− 0. In Figure 3b the L bit
is 0 for a Branch instruction and 1 for Branch-with-link. The offset field is a 24-bit signed number in
2’s complement.

(a) Data processing instructions

(b) Branch instructions

Figure 3: The machine code format.

3

To display the name of an instruction mnemonic on the Terminal window you may wish to declare
some strings of data as indicated below, and write the characters in these strings to the JTAG UART
that is connected to the Terminal window:

AND: .asciz ”AND\n”
ORR: .asciz ”ORR\n”
EOR: .asciz ”EOR\n”
BAL: .asciz ”B\n”

4. Make a new Monitor Program project in the folder where you stored your source-code files. In the
Monitor Program screen illustrated in Figure 10, choose Exceptions in the Linker Section Presets
drop-down menu. In the screen of Figure 5, select JTAG UART for ARM 0 as the Terminal device.
Refer to Exercise 2, Part IV, for information on using the JTAG UART to communicate with the
Monitor Program’s Terminal window.

5. Compile, download, and test your program.

Figure 4: Selecting the Exceptions linker section.

4

Figure 5: Specifying the Terminal device.

Part II

For this part you are to modify your code from Part I so that additional information in displayed on the
Terminal window when a pushbutton KEY is pressed. All of your changes for this part should be done in
the interrupt service routine for the pushbutton KEYs. You should not have to change any other files. For
Part I you were required to display only the mnemonic of the next instruction, such as AND or EOR, that is
to be executed in the main program on return from an interrupt. For this part you are to extend your solution
so that it also displays the names of the register arguments of each instruction. Use the machine encodings
shown in Figure 3 to find the required information. An example of output produced on the Terminal window
after several KEYs have been pressed might be:

ORR R2, R1, R0
EOR R3, R4, R5
AND R0, R1, R2
B 0xFFFFF8
ORR R6, R7, R8
AND R8, R7, R6
. . .

For logical instructions you can assume that only the register numbers used in the main program from
Figure 1 have to be supported. Thus, your code only has to be able to display register indices which are
single-digit numbers from 0 to 9. For a branch instruction you are to show the 24-bit branch offset as a
2’s-complement number, as indicated in the example output that is provided above.

5

Part III

Consider the C code shown in Figure 6. It contains an endless loop that repeatedly calls a function named
KEY pressed, not shown in the figure, which checks to see if a KEY is currently being pressed. If so, it
waits for the KEY to be released and then returns 1. Otherwise, if no KEY was pressed, 0 is returned. When
KEY pressed returns 1, the main program calls a function named doit. This function is supposed to print, on
the Terminal window, the mnemonic of the instruction that will be executed on return from the doit function.
In the main program inline assembly commands are used to insert specific instructions following each call
to doit. For example, the first call to doit is followed by the instruction AND R0, R1, R2, the second call
to doit is followed by the instruction EOR R3, R4, R5, and so on.

Part of the code for the doit function is given in Figure 6. It uses two inline assembly commands. The
command

asm(”LDR R0, [LR]” : : : ”r0”)

loads the machine code of the instruction pointed to by the link register into register R0. The argument
”r0” in this command informs the C compiler that the contents of register R0 will be changed as a result of
executing the instruction. The command

asm(”MOV %0, R0” : ”=r” (machine code) : :)

copies the contents of register R0 into the variable machine code. The argument %0 in this command is set
to whichever register, for example register R1, is chosen by the C compiler to hold the value of the variable
machine code.

Make sure that you understand how the inline assembly commands work. Documentation on these com-
mands can be found by searching on the web for gnu inline assembly ARM, or something similar.

Perform the following:

1. Type the C code for the main program into a file, for example part3.c. Also, add your own code for
the KEY pressed function.

2. Complete the C code for the doit function. You should display on the Terminal window the mnemonic
of the instruction corresponding to the machine code variable. Refer to Figure 3 for the machine code
formats. You should use the printf library function to display the result produced by the program. To
use the printf function include the stdio.h library as shown in Figure 6.

3. Make a new Monitor Program project for this part of the exercise. In the Monitor Program screen
shown in Figure 7 set the Terminal device to Semihosting. This setting causes the output of li-
brary functions like printf to appear in the Terminal window of the Monitor Program graphical user
interface.

4. Compile, download, and test your program.

6

#include <stdio.h>

/* Function prototypes */
int KEY pressed(void);
void doit(void);

/* This program demonstrates the use of inline assembly code in C code */
int main(void)
{

while (1) // endless loop
{

if (KEY pressed ()) doit ();
asm(”AND R0, R1, R2”);
if (KEY pressed ()) doit ();
asm(”EOR R3, R4, R5”);
if (KEY pressed ()) doit ();
asm(”ORR R6, R7, R8”);
if (KEY pressed ()) doit ();
asm(”AND R8, R7, R6”);
if (KEY pressed ()) doit ();
asm(”EOR R5, R4, R3”);
if (KEY pressed ()) doit ();
asm(”ORR R2, R1, R0”);
if (KEY pressed ()) doit ();

}
}

int KEY pressed()
{
· · · code not shown

}

void doit()
{

unsigned int machine code;
// get the machine code of the next instruction on return from this subroutine
asm(”LDR R0, [LR]” : : : ”r0”); // read machine code into R0
asm(”MOV %0, R0” : ”=r” (machine code) : :); // copy R0 into variable machine code

· · · code not shown
}

Figure 6: Main program for Part III.

7

Figure 7: Specifying the Terminal device.

Part IV

In this part you are to repeat the tasks given in Parts I and II, but using C code rather than assembly-language
code.

Consider the main program shown in Figure 8. The program first initializes the ARM A9 stack pointer for
IRQ (interrupt) mode by calling a subroutine named set A9 IRQ stack(). This step is necessary because,
although the C compiler automatically generates code that initializes the SVC-mode (supervisor mode)
stack pointer, the C compiler does not generate code to initialize the IRQ-mode stack pointer. The main
program then calls subroutines config GIC() to initialize the generic interrupt controller (GIC), and con-
fig KEYs() to initialize the pushbutton KEYs port so that it will generate interrupts. Finally, a subroutine
enable A9 interrupts() is called to unmask IRQ interrupts in the ARM processor.

After completing the initialization steps described above, the main program executes an endless loop that
consists of several logical instructions. Inline assembly commands, described in Part III, are used to specify
the logic instructions.

Perform the following:

8

int main(void)
{

set A9 IRQ stack (); // initialize the stack pointer for IRQ mode
config GIC (); // configure the general interrupt controller
config KEYs (); // configure pushbutton KEYs to generate interrupts

enable A9 interrupts (); // enable interrupts in the A9 processor

while (1) // wait for an interrupt
{

asm(”AND R0, R1, R2”);
asm(”EOR R3, R4, R5”);
asm(”ORR R6, R7, R8”);
asm(”AND R8, R7, R6”);
asm(”EOR R5, R4, R3”);
asm(”ORR R2, R1, R0”);

}
}

/* Initialize the banked stack pointer register for IRQ mode */
void set A9 IRQ stack(void)
{
· · · code not shown

}
/* Configure the Generic Interrupt Controller (GIC) */
void config GIC(void)
{
· · · code not shown

}
/* Set up the pushbutton KEYs port in the FPGA */
void config KEYs(void)
{
· · · code not shown

}
/* Turn on interrupts in the ARM processor */
void enable A9 interrupts(void)
{
· · · code not shown

}

Figure 8: Main program for Part IV.

1. Create a new folder to hold your Monitor Program project for this part. Create a file, such as part1.c,
for your main program, and create any other source-code files that you may wish to use. Write the
code for the subroutines that are called by the main program. For the config GIC() subroutine set up
the GIC to send interrupts to the ARM processor from the pushbutton KEYs port.

9

2. Figure 9 gives part of the C code required for the interrupt handler. It is declared with the attribute
specification interrupt, and has the special name cs3 isr irq. Using this declaration allows the C
compiler to recognize the code as being the IRQ interrupt handler. The compiler generates an en-
try that branches to this code in the ARM exception-vector table. Complete the missing part of this
code. You have to obtain the machine code of the next instruction to be executed on return from the
interrupt, and pass this machine code to the interrupt service routine for the pushbutton KEYs.

You have to write the code for the pushbutton isr() interrupt service routine. Your code should per-
form the same task as in Part II of this exercise. That is, you are to print on the Terminal window the
mnemonic, and register indices, of the instruction that will be executed on return from the interrupt.
You can make the same assumptions as in Parts I and II, namely that only the logical instructions,
plus the branch instruction, have to be handled by your code. For the branch instruction display the
24-bit branch offset as its argument.

3. Make a new Monitor Program project in the folder where you stored your source-code files. As
discussed for Part III, in the Monitor Program screen shown in Figure 7 set the Terminal device to
Semihosting. Also, in the Monitor Program screen illustrated in Figure 10, make sure to choose
Exceptions in the Linker Section Presets drop-down menu.

4. Compile, download, and test your program.

/* Define the IRQ exception handler */
void attribute ((interrupt)) cs3 isr irq (void)
{

/* Read the ICCIAR from the CPU interface in the GIC */
int address = MPCORE GIC CPUIF + ICCIAR;
int int ID = *((int *) address);

if (int ID == KEYS IRQ) // check if interrupt is from the KEYs
{
· · · code not shown
pushbutton ISR (. . .);

}
else

while (1); // if unexpected, then stay here

/* Write to the End of Interrupt Register (ICCEOIR) */
address = MPCORE GIC CPUIF + ICCEOIR;
*((int *) address) = int ID;

return;
}

Figure 9: IRQ Exception handler.

10

Figure 10: Selecting the Exceptions linker section.

Copyright c©2016 Altera Corporation.

11

