
Laboratory Exercise 3
Subroutines and Stacks

This exercise is about subroutines and subroutine linkage using the Nios II processor. You will learn about
the concepts of parameter passing, stacks, and recursion. For this exercise you have to know the Nios II
processor architecture and its assembly language, and you should have a basic understanding of the C
programming language.

Part I

You are to write a Nios II assembly language subroutine called FINDSUM that uses a loop to compute the

summation
N∑
i=1

i. Equivalent code for your subroutine in the C language is shown below.

int FINDSUM(int N)
{

int sum = 0;
while (N != 0)
{

sum = sum + N;
N = N − 1;

}
return sum;

}

You need to provide a main program that calls your FINDSUM subroutine. Part of this main program is
shown below. The value of argument N that is used for your subroutine is stored in memory as shown in
the code—your main program needs to load this value from memory and pass it to the subroutine, using
processor register r4. Return the result from the subroutine in register r2.

.text

.global _start
_start:

. . . get N and pass to subroutine
call FINDSUM

END: br END # wait here

FINDSUM: . . .
. . .

N: .word 9
.end

1

Perform the following:

1. Create a new folder and make a Monitor Program project for your summation code. Select the Nios II
processor and use the computer that corresponds to your DE-series board listed in Table 1.

Board Computer System
DE0-Nano DE0-Nano Computer

DE0-Nano-SoC DE0-Nano-SoC Computer

Table 1: DE-series board computer systems

2. Assemble and download your program. Test it for various values of N .

Part II

You are to write an assembly language program that sorts a list of 32-bit numbers into descending order.
The first entry in the list gives the number of data elements to be sorted, and the rest of the list provides
the data. The list of data must be sorted “in place”, meaning that you are not allowed to create a copy in
memory of the list to do the sorting.

A program written in the C language that performs the required sorting operation is shown in Figure 1. This
program implements a simple bubble-sort algorithm. It uses an outer loop to traverse the list a number of
times until sorted. An inner loop calls the SWAP subroutine, not shown in the figure, which swaps the list
elements in memory when needed.

Write a main program and subroutine in the Nios II assembly language that is equivalent to the C code in
Figure 1. Your SWAP subroutine should be passed the address of a list element in processor register r4, and
should provide its return value to the main program in register r2.

The list can be defined as part of the data for your assembly language program as follows:

List: .word 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Perform the following:

1. Create a new folder and make a Monitor Program project for your sorting code. Select the Nios II
processor and use the computer that corresponds to your DE-series board listed in Table 1.

2. Test your algorithm with various data sets and ensure that the list of data is properly sorted in-place
in the memory. A good debugging technique for this code is to use the Memory tab in the Monitor
Program to view the contents of the list as the sorting algorithm progresses. Each time a breakpoint
is reached by the processor (or an instruction is single-stepped), the list can be examined to see how
the items are being swapped.

2

int LIST[] = {10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int main(void)
{

int i, flag, length, * item_ptr;

length = LIST[0]; // number of elements to be sorted
do
{

flag = 0; // indicates if nothing remains to be sorted
item_ptr = LIST + 1; // pointer to the first element of data
for (i = 1; i < length; i++)
{

flag |= SWAP (item_ptr);
++item_ptr; // point to the next word of data

}
- -length; // last item in the list is in the right place

}
while (flag);

}

Figure 1: A bubble-sort algorithm.

Part III

For this part of the exercise you are to rewrite your FINDSUM subroutine from Part I to make it recursive.
Equivalent C code for your subroutine is shown below.

int FINDSUM(int N)
{

if (N != 0)
return N + FINDSUM (N-1);

else
return 0;

}

In your assembly-language code, make sure to initialize the Nios II stack pointer to a suitable value, and use
the stack to save the state of the FINDSUM subroutine each time that it recurses.

Create a new folder and make a Monitor Program project for your recursive code. Assemble, download,
and test your program.

Part IV

You are to write an assembly-language subroutine that computes the nth number in the Fibonacci sequence.

3

The nth Fibonacci number is computed as

Fib(n) = Fib(n− 1) + Fib(n− 2)

Note that Fib(0) = 0 and Fib(1) = 1.

Your subroutine has to be recursive. Equivalent C code for such a subroutine is shown below.

int FIBONACCI(int N)
{

if (N < 2)
return N;

else
return FIBONACCI(N−1) + FIBONACCI(N−2);

}

You need to provide a main program that calls your FIBONNACI subroutine, in the same way as for the
earlier parts of the exercise. The value of the argument N should be loaded from memory and passed to
your subroutine. You can assume that N > 1.

Make sure to initialize the Nios II stack pointer to a suitable value, and use the stack to save the state of the
FIBONNACI subroutine each time that it recurses.

Create a new folder and make a Monitor Program project for your Fibonacci code. Assemble, download,
and test your program.

4

Copyright c© 1991-2016 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

5

	Part I
	Part II
	Part III
	Part IV

