
Laboratory Exercise 5
Using Interrupts with Assembly Code

The purpose of this exercise is to investigate the use of interrupts for the Nios II processor, using assembly-
language code. To do this exercise you need to be familiar with the exceptions processing mechanisms
for the Nios II processor, which are discussed in the tutorial Nios II Introduction, available in the Intel
PSG University Program website. You should also read the information on exceptions and interrupts of the
pre-built computer system documentation corresponding to which DE-series board you own.

Part I

Consider the main program shown in Figure 1. The main program needs to set up the stack pointer, configure
the pushbutton KEYs port to generate interrupts, and then enable interrupts in the Nios II processor. You
are to fill in the code that is not shown in the figure.

The function of your program is to show the numbers 0 to 3 on the HEX0 to HEX3 displays, respectively,
when a corresponding pushbutton KEY is pressed. Since the main program simply “idles” in an endless
loop, as shown in Figure 1, you have to control the displays by using an interrupt service routine for the
pushbutton KEYs port.

Perform the following:

1. Create a new folder to hold your files for this part. Create a file, such as part1.s, and copy the assembly
language code for the main program, given in Figure 1, into this file. Create a file exception_handler.s,
and copy the code given in Figure 2 into it. Create any other source-code files that you need.

2. Figure 2 gives the code required for the Nios II reset and exceptions handlers. The exception handler
calls a subroutine KEY_ISR to handle interrupts from the KEY pushbuttons. Create a file key_isr.s
and write the code for the KEY_ISR interrupt service routine. Your code should show the digit 0 on
the HEX0 display when KEY0 is pressed, and then if KEY0 is pressed again the display should be
“blank”. You should toggle the HEX0 display between 0 and “blank” in this manner each time KEY0

is pressed. Similarly, toggle between “blank” and 1, 2, or 3 on the HEX1 to HEX3 displays each time
KEY1, KEY2, or KEY3 is pressed, respectively. If you are using a DE10-Lite, the toggling between
2/3 and “blank” is not possible as the DE10-Lite Computer has only two pushbutton KEYs .

3. Make a new Monitor Program project in the folder where you stored your source-code files. In the
Monitor Program screen illustrated in Figure 3, make sure to choose Exceptions in the Linker Section
Presets drop-down menu. Compile, download, and test your program.

1

.text

.global _start
_start:

/* set up the stack */
· · · code not shown

/* write to the pushbutton port interrupt mask register */
· · · code not shown

/* enable Nios II processor interrupts */
· · · code not shown

IDLE: br IDLE /* main program simply idles */
.end

Figure 1: Main program for Part 1.

/************************* RESET SECTION *******************************/
.section .reset, "ax"
movia r2, _start
jmp r2 /* branch to main program */

/************************* EXCEPTIONS SECTION *************************/
.section .exceptions, "ax"
.global EXCEPTION_HANDLER

EXCEPTION_HANDLER:
subi sp, sp, 16 /* make room on the stack */
stw et, 0(sp)
rdctl et, ctl4
beq et, r0, SKIP_EA_DEC /* interrupt is not external */
subi ea, ea, 4 /* must decrement ea by one instruction */

/* for external interrupts, so that the */
/* interrupted instruction will be re-run */

SKIP_EA_DEC:
stw ea, 4(sp) /* save all used registers on the Stack */
stw ra, 8(sp) /* needed if call inst is used */

stw r22, 12(sp)
rdctl et, ctl4
bne et, r0, CHECK_LEVEL_1 /* interrupt is an external interrupt */

Figure 2: Exception handlers (Part a).

2

NOT_EI: br END_ISR /* must be unimplemented instruction or TRAP */
/* instruction; ignored in this code */

CHECK_LEVEL_1: /* pushbutton port is interrupt level 1 */
andi r22, et, 0b10
beq r22, r0, END_ISR /* other interrupt levels are not handled in this code */
call KEY_ISR

END_ISR: ldw et, 0(sp) /* restore all used register to previous values */
ldw ea, 4(sp)
ldw ra, 8(sp) /* needed if call inst is used */
ldw r22, 12(sp)
addi sp, sp, 16
eret

.end

Figure 2. Exception handlers (Part b).

Figure 3: Selecting the Exceptions linker section.

3

Part II

Consider the main program shown in Figure 4. The code is required to set up the Nios II stack pointer and
to enable interrupts from two sources: the pushbutton KEYs and the Interval Timer. The main program
calls the subroutines CONFIG_TIMER and CONFIG_KEYS to set up the two ports. You are to write each
of these subroutines. Set up the Interval Timer to generate one interrupt every 0.25 seconds.

In Figure 4 the main program executes an endless loop writing the value of the global variable COUNT to
the red lights LEDR. In the interrupt service routine for the Interval Timer you are to increment the variable
COUNT by the value of the RUN global variable, which should be either 1 or 0. You are to toggle the value
of the RUN global variable in the interrupt service routine for the pushbutton KEYs, each time a KEY is
pressed. When RUN = 0, the main program will display a static count on the red lights, and when RUN = 1,
the count shown on the red lights will increment every 0.25 seconds.

Make a new Monitor Program project for this part, and assemble, download, and test your code.

Part III

Modify your program from Part II so that you can vary the speed at which the counter displayed on the red
lights is incremented. All of your changes for this part should be made in the interrupt service routine for
the pushbutton KEYs. The main program and the rest of your code should not be changed.

Implement the following behavior. When KEY0 is pressed, the value of the RUN variable should be toggled,
as in Part I. Hence, pressing KEY0 stops/runs the incrementing of the COUNT variable. When KEY1 is
pressed, the rate at which COUNT is incremented should be either increased or decreased depending on the
value of SW0. If SW0 is 1, then the rate should be doubled, otherwise the rate should be halved. You should
implement this feature by stopping the Interval Timer within the pushbutton KEYs interrupt service routine,
modifying the load value used in the timer, and then restarting the timer.

Part IV

For this part you are to create a real-time clock that is shown on the seven-segment displays HEX3− 0. Set
up an interval timer to provide an interrupt every 1/100 of a second. Use this timer to increment a global
variable called TIME. You should use the TIME variable as your real time clock. Use the format SS:DD,
where SS are seconds and DD are hundredths of a second. When the clock reaches 59:99, it should wrap
around to 00:00.

Make a new folder to hold your Monitor Program project for this part. Write the program for the real-time
clock. To show the TIME variable in the real-time clock format SS:DD, you can use the same approach
that was followed for Part 4 of Lab Exercise 4. In that previous exercise you used polled I/O with the
Interval Timer, whereas now you are using interrupts. One possible way to structure your code is illustrated
in Figure 5. The endless loop in this code writes the value of a variable named HEX_code to the HEX3− 0
displays.

Using the scheme in Figure 5, the interrupt service routine for the second Interval Timer has to increment
the TIME variable, and also update the HEX_code variable that is being written to the 7-segment displays
by the main program.

4

Make a new Monitor Program project and test your program.

.text

.global _start
_start:

/* set up the stack */
· · · code not shown

call CONFIG_TIMER
call CONFIG_KEYS

/* enable Nios II processor interrupts */
· · · code not shown

movia r8, /* insert red lights LEDR base address */
LOOP: ldw r9, COUNT(r0) /* global variable */

stw r9, (r8)
br LOOP

/* Configure the interval timer to create interrupts at 0.25 second intervals */
CONFIG_TIMER:

· · · code not shown
ret

/* Configure the pushbutton KEYS to generate interrupts */
CONFIG_KEYS:

· · · code not shown
ret

/* Global variables */
.global COUNT

COUNT: .word 0x0 # used by timer
.global RUN # used by pushbutton KEYs

RUN: .word 0x1 # initial value to increment COUNT

.end

Figure 4: Main program for Part II.

5

.text

.global _start
_start:

/* set up the stack */
· · · code not shown

call CONFIG_TIMER

/* enable Nios II processor interrupts */
· · · code not shown

movia r9, /* insert HEX3-0 base address here */
LOOP: ldw r10, HEX_code(r0) /* global variable */

stw r10, (r9) /* show the time in format SS:DD */
br LOOP

/* Configure the interval timer to create interrupts at 1/100 second intervals */
CONFIG_TIMER:

· · · code not shown
ret

/* Global variables */
.global COUNT

TIME: .word 0x0 # used for real-time clock
.global HEX_code

HEX_code: .word 0x0 # used for 7-segment displays

Figure 5: Main program for Part IV.

6

Copyright c© 1991-2017 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

7

	Part I
	Part II
	Part III
	Part IV

