
Laboratory Exercise 6
Using C code with the ARM Processor

This is an exercise in using C code with the ARM Cortex-A9 processor. We will use the Altera Monitor
Program software to compile, load, and run application programs written in the C language. In this exercise
you have to be familiar with both the C language and the ARM assembly language. You should read the parts
of the Monitor Program tutorial that discuss the use of C code. This tutorial can be accessed from Altera’s
University Program website, or by selecting Help > Tutorial within the Monitor Program software. You
also need to be familiar with a number of I/O ports in the DE1-SoC Computer, including the parallel ports
connected to the red LEDs, 7-segment displays, and pushbutton switches, as well as the A9 Private Timer
port. These I/O ports are described in the documentation for the DE1-SoC Computer.

Part I

In Exercise 1, Part II, you were given a program in the ARM assembly language that finds the largest number
in a list of 32-bit integers that is stored in the memory. This code is reproduced in Figure 1. For this exercise
you are to write a C-language program that implements this task. Perform the following steps.

1. Write your C code in a file called part1.c. You should use the printf library function to display the
result produced by the program. To use the printf function you have to include the stdio.h library
header file in your C program by using the statement

#include <stdio.h>

To include a list of data words in the C program, you can declare them as an array using a statement
such as

int LIST[8] = {7, 4, 5, 3, 6, 1, 8, 2}; // number of elements, element 1, element 2, ...

2. Make a new Monitor Program project for this part of the exercise. In the Monitor Program screen
shown in Figure 2 select C Program in the Program Type dropdown menu, and on the screen that
follows select your part1.c file. In the screen of Figure 3 set the Terminal device to Semihosting.
This setting causes the output of the printf library function to appear in the Terminal window of the
Monitor Program graphical user interface.

Compile and download your program. Examine the disassembled code and compare it to the code
shown in Figure 1. To see the assembly code corresponding to your C source code, use the Goto
instruction dialog box in the Monitor Program’s Disassembly window. As illustrated in Figure 4,
type main in the dialog box and then click on the Go button to display your code. When you run

1



the program, the results produced by the printf function should appear in the Terminal window as
indicated in the figure.

/* Program that finds the largest number in a list of integers */
.text
.global start

start:
LDR R4, =RESULT // R4 points to result location
LDR R2, [R4, #4] // R2 holds the number of elements in the list
ADD R3, R4, #8 // R3 points to the first number
LDR R0, [R3] // R0 holds the largest number so far

LOOP: SUBS R2, R2, #1 // decrement the loop counter
BEQ DONE
ADD R3, R3, #4
LDR R1, [R3] // get the next number
CMP R0, R1 // check if larger number found
BGE LOOP
MOV R0, R1 // update the largest number
B LOOP

DONE: STR R0, [R4] // store largest number into result location

END: B END

RESULT: .word 0
N: .word 7 // number of entries in the list
NUMBERS: .word 4, 5, 3, 6 // the data

.word 1, 8, 2

.end

Figure 1: Assembly-language program that finds the largest number.

Part II

Using the printf function results in a fairly large number of assembly-language instructions, because the
standard library routines are quite complex. Modify your program to display the result on the red lights
LEDR, instead of using the printf statement. The parallel port in the DE1-SoC Computer connected to the
red lights is memory-mapped at the address 0xFF200000, as illustrated in Figure 5.

Compile, download, and run this program. Observe the difference in the size of the machine code for this
program as compared to the one from Part I.

2



Figure 2: Setting the program type.

Figure 3: Configuring the Terminal window.

3



Figure 4: Displaying the code for the C program.

0xFF200000 

LEDR0LEDR9

Address

031 910 . . .Unused Data register

Figure 5: The parallel port connected to the red lights LEDR.

Part III

In Exercise 2 you were given a program that uses shift and AND operations to find the longest string of
1’s in a word of data. The program is reproduced in Figure 6. In Parts III and IV of Exercise 2 you were
asked to extend this program so that it processed a list of data words, rather than just one word. Also, the
program was extended to compute the longest strings of 1’s, the longest string of 0’s, and the longest string
of alternating 1’s and 0’s for any of the words in the list. The results of these computations were to be
shown on the 7-segment displays in the DE1-SoC Computer. For this part of the exercise, you are to write
a C-language program to implement these tasks.

4



/* Program that counts consecutive 1’s */
.text
.global start

start:
LDR R1, TEST NUM // load the data word into R1

MOV R0, #0 // R0 will hold the result
LOOP: CMP R1, #0 // loop until the data contains no more 1’s

BEQ END
LSR R2, R1, #1 // perform SHIFT, followed by AND
AND R1, R1, R2
ADD R0, #1 // count the string lengths so far
B LOOP

END: B END

TEST NUM: .word 0x103fe00f

.end

Figure 6: Assembly-language program that counts consecutive ones.

To include the list of data words in your C program, you can declare them as an array using a statement
such as

int TEST NUM[ ] = {0x0000e000, 0x3fabedef, 0x00000001, 0x00000002, 0x75a5a5a5,
0x01ffC000, 0x03ffC000, 0x55555555, 0x77777777, 0x08888888,
0x00000000};

Display the count for the longest string of 1’s on 7-segment displays HEX1− 0, for the longest string of 0’s
on HEX3 − 2, and for alternating 1’s and 0’s on HEX5 − 4. The parallel port in the DE1-SoC Computer
connected to the 7-segment displays is illustrated in Figure 7.

Create a new folder and Monitor Program project for your C program, and then compile, download, and
test the code. Using the ten words of test data shown above, the correct result that should appear on the
HEX5− 0 displays is 32 31 12.

5



0xFF200020 

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0xFF200030 

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

07 6815 142431 30 1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Unused

Figure 7: The parallel ports connected to the 7-segment displays HEX5− 0.

Part IV

In Exercise 4 you were asked to implement a real-time clock in the DE1-SoC Computer. The clock-time
was shown on the HEX3 − 0 seven-segment displays in the format SS:DD, with SS representing seconds
and DD representing hundredths of a second. Time was measured in intervals of 0.01 seconds by using
polled I/O with the A9 Private Timer, and the clock could be stopped/run by pressing one of the pushbutton
KEYs.

In this part of the exercise you are to write a C program that implements a real-time clock. Display the
clock-time on the 7-segment displays HEX5− 0 in the format MM:SS:DD, where where MM are minutes,
SS are seconds, and DD are hundredths of a second. Measure time intervals of 0.01 seconds in your program
by using polled I/O with the A9 Private Timer. You should be able to stop/run the clock by pressing any
pushbutton KEY. When the clock reaches 59:59:99, it should wrap around to 00:00:00.

Make a new folder to hold your Monitor Program project for this part. Create a file called part4.c and
type your C code into this file. Make a new Monitor Program project for this part of the exercise, and then
compile, download, and test your program.

Part V

Write a C program that scrolls the message dE1-SoC in the right-to-left direction across the 7-segment
displays HEX5 − 0. The content of the displays in each step should appear as illustrated in Table 1. You
should scroll the display at a rate of 0.2 seconds per character. You should be able to stop/run the scrolling
message by pressing any pushbutton KEY.

6



Time slot Display

0 d E 1 - S o
1 E 1 - S o C
2 1 - S o C
3 - S o C
4 S o C
5 o C
6 C
7
8 d
9 d E
. . . . . .

Table 1. Scrolling the message dE1-SoC on HEX5− 0.

Note that scrolling a message across the 7-segment displays is similar in nature to the task of implementing
a real-time clock, from Part IV. You should be able to reuse most of your code from Part IV. But instead of
updating the clock each time the A9 Private Timer expires, you need to update the scrolling message.

Make a new folder to hold your Monitor Program project for this part. Create a file called part5.c and type
your C code into this file. Make a new Monitor Program project, compile, download, and test your program.

Copyright c©2015 Altera Corporation.

7


