
Laboratory Exercise 4
Input/Output in an Embedded System

The purpose of this exercise is to investigate the use of devices that provide input and output capabilities
for a processor. There are two basic techniques for dealing with I/O devices: program-controlled polling
and interrupt-driven approaches. You will use the polling approach in this exercise, writing programs in the
ARM assembly language. Your programs will be executed on an ARM Cortex A9 processor in the DE0-
Nano-SoC Computer, implemented on an Altera DE0-Nano-SoC board. Parallel port interfaces, as well as
a timer module, will be used as examples of I/O hardware.

A parallel port provides for data transfer in either the input or output direction. The transfer of data is done
in parallel and it may involve from 1 to 32 bits. The number of bits, n, and the type of transfer depend on
the specifications of the specific parallel port being used. The parallel port interface can contain the four
registers shown in Figure 1.

0(n-1)

Input/Output data

(a) Data register

(b) Direction register

Direction control for each input/output line

Interrupt enable/disable control for each input line

(c) Interrupt-mask register

(d) Edge-capture register

Edge detection for each input line

Address offset
(in bytes)

0

4

8

12

Figure 1: Registers in the parallel port interface.

Each register is n bits long. The registers have the following purpose:

• Data register: holds the n bits of data that are transferred between the parallel port and the ARM
processor. It can be implemented as an input, output, or a bidirectional register.

1

• Direction register: defines the direction of transfer for each of the n data bits when a bidirectional
interface is generated.

• Interrupt-mask register: used to enable interrupts from the input lines connected to the parallel port.

• Edge-capture register: indicates when a change of logic value is detected in the signals on the input
lines connected to the parallel port. Once a bit in the edge capture register becomes asserted, it will
remain asserted. An edge-capture bit can be de-asserted by writing to it using the ARM processor.

Not all of these registers are present in some parallel ports. For example, the Direction register is included
only when a bidirectional interface is specified. The Interrupt-mask and Edge-capture registers must be
included if interrupt-driven input/output is used.

The parallel port registers are memory mapped, starting at a specific base address. The base address has to
be a multiple of four if the parallel port is to be accessed using word accesses from the ARM processor. The
base address becomes the address of the Data register in the parallel port. The addresses of the other three
registers have offsets of 4, 8, or 12 bytes (1, 2, or 3 words) from this base address. The DE0-Nano-SoC
Computer has parallel ports connected to slide switches, pushbutton KEYs, and LEDs.

Part I

Write an ARM assembly language program that displays a decimal digit on the green lights LED3−0 on
the DE0-Nano-SoC board. The other lights LED7−4 should be off.

The parallel port in the DE0-Nano-SoC Computer connected to the green lights LED7−0 is memory mapped
at the address 0xFF200000. Figure 2 shows how the LEDs are connected to the parallel ports.

0xFF200000

LED0LED7

Address

031 78 . . .Unused Data register

Figure 2: The parallel port connected to the green lights LED7−0.

If KEY0 is pressed on the DE0-Nano-SoC board, you should set the number displayed on the LEDs to 0.
If KEY1 is pressed and SW0 is high, then increment the displayed number to a maximum of 9. If KEY1 is
pressed and SW0 is low, then decrement the number to a minimum of 0. The parallel port connected to the
pushbutton KEYs has the base address 0xFF200050, as illustrated in Figure 3. The parallel port connected
to the slider switches SW has the base address 0xFF200040, as illustrated in Figure 4. In your program,
use polled I/O to read the Data registers of the KEY and SW ports to check the status of the buttons and
switches. When you are not pressing any KEY the Data register provides 0, and when you press KEYi

the Data register provides the value 1 in bit position i. Once a button-press is detected, be sure that your
program waits until the button is released. You should not use the Interruptmask or Edgecapture registers
for this part of the exercise.

2

Address 02 14 331 30 . . .

0xFF200050

0xFF200058

0xFF20005C

Unused

KEY1-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 3: The parallel port connected to the pushbutton KEYs.

0xFF200040

SW0SW3

Address

Data register031 34 . . .Unused

Figure 4: The parallel port connected to the slider switches SW.

Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file called part1.s
and type your assembly language code into this file.

2. Make a new Monitor Program project in the folder where you stored the part1.s file. Use the DE0-
Nano-SoC Computer for this project, and select the ARM A9 as the target processor architecture.

3. Compile, download, and test your program.

Part II

Write an ARM assembly language program that displays a two-digital decimal counter on the green LEDs.
Show the most-significant decimal digit on LED7−4, and the least-significant digit on LED3−0. The counter
should be incremented approximately every 0.25 seconds. When the counter reaches the value 99, it should
start again at 0. The counter should stop/start when any pushbutton KEY is pressed.

To achieve a delay of approximately 0.25 seconds, use a delay-loop in your assembly language code. A
suitable example of such a loop is shown below.

DO DELAY: LDR R7, =200000000 // delay counter
SUB LOOP: SUBS R7, R7, #1

BNE SUB LOOP

To avoid “missing” any button presses while the processor is executing the delay loop, you should use the
Edgecapture register in the KEY port, shown in Figure 3. When a pushbutton is pressed, the corresponding
bit in the Edgecapture register is set to 1, and it remains set until reset to 0 by writing into the register.

3

Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file called part2.s
and type your assembly language code into this file.

2. Make a new Monitor Program project in the folder where you stored the part2.s file. Use the DE0-
Nano-SoC Computer for this project, and select the ARM A9 as the target processor architecture.

3. Compile, download, and test your program.

Part III

In Part II you used a delay loop to cause the ARM processor to wait for approximately 0.25 seconds.
The processor loaded a large value into a register before the loop, and then decremented that value until it
reached 0. In this part you are to modify your code so that a hardware timer is used to measure an exact
delay of 0.25 seconds. You should use polled I/O to cause the ARM processor to wait for the timer.

The DE0-Nano-SoC Computer includes a number of hardware timers. For this exercise use the timer called
the A9 Private Timer. As shown in Figure 5 this timer has four registers, starting at the base address
0xFFFEC600. To use the timer you need to write a suitable value into the Load register. Then, you need to
set the enable bit E in the Control register to 1, to start the timer. The timer starts counting from the initial
value in the Load register and counts down to 0 at a frequency of 200 MHz. The counter will automatically
reload the value in the Load register and continue counting if the A bit in the Control register is set to 1.
When it reaches 0, the timer sets the F bit in the Interrupt status register to 1. You should poll this bit in
your program to cause the A9 processor to wait for the timer. To reset the F bit to 0 you have to write a 1
into this bit-position.

EAI

F

Address 01531 116 2

Load value 0xFFFEC600

Current value0xFFFEC604

Unused0xFFFEC608

Unused0xFFFEC60C

7

Control

Interrupt status

Prescaler

8

Counter

Load

Unused

3 Register name

Figure 5: The A9 Private Timer registers.

Make a new folder to hold your Monitor Program project for this part. Create a file called part3.s and
type your assembly language code into this file. Make a new Monitor Program project for this part of the
exercise, and then compile, download, and test your program.

4

Part IV

In this part you are to write an assembly language program that implements a real-time clock. Display
the time on the Monitor Program’s Terminal window in the format MM:SS, where MM are minutes and SS
are seconds. Measure time intervals of 1 second in your program by using polled I/O with the A9 Private
Timer. You should be able to stop/run the clock by pressing any pushbutton KEY. When the clock reaches
59:99, it should wrap around to 00:00.

Make a new Monitor Program project for this part of the exercise. In the screen shown in Figure 6, make sure
to select JTAG UART for ARM 0 as the Terminal device. Otherwise, no character output will appear on the
Terminal window. Refer to Exercise 2, Part IV, for information on using the JTAG UART to communicate
with the Monitor Program’s Terminal window.

Figure 6: Specifying the Terminal device.

You may wish to make use of the following text strings. The first one clears the Terminal window, and the
second one returns the ”cursor” to the upper-left corner of the window:

CLR SCRN: .asciz ”\033[2J”
HOME: .asciz ”\033[H”

Copyright c©2016 Altera Corporation.

5

