
Laboratory Exercise 7
Using Interrupts with C code

The purpose of this exercise is to investigate the use of interrupts for the ARM A9 processor, using C code.
To do this exercise you need to be familiar with the exceptions processing mechanisms of the ARM proces-
sor, and with the operation of the ARM Generic Interrupt Controller (GIC). These concepts are discussed
in the tutorials Introduction to the ARM Processor, and Using the ARM Generic Interrupt Controller. You
should also read the parts of the DE1-SoC Computer documentation that pertain to the use of exceptions
and interrupts with C code.

This exercise involves the same tasks as those given in Exercise 5, except that this exercise uses C code
rather than assembly-language code.

Part I

Consider the main program shown in Figure 1. The program first initializes the ARM A9 stack pointer
for IRQ (interrupt) mode by calling a subroutine named set A9 IRQ stack(). This step is necessary because,
although the C compiler automatically generates code that initializes the SVC-mode (supervisor mode)
stack pointer, the C compiler does not generate code to initialize the IRQ-mode stack pointer. The main
program then calls subroutines config GIC() to initialize the generic interrupt controller (GIC), and con-
fig KEYs() to initialize the pushbutton KEYs port so that it will generate interrupts. Finally, a subroutine
enable A9 interrupts() is called to unmask IRQ interrupts in the ARM processor. You are to fill in the miss-
ing code for the subroutines in Figure 1. After completing the initialization steps described above, the main
program just “idles” in an endless loop.

The purpose of your program is to show the numbers 0 to 3 on the HEX0 to HEX3 displays, respectively,
when a corresponding pushbutton KEY is pressed. Since the main program only idles in a loop, you have
to control the displays by using an interrupt service routine for the pushbutton KEYs port. Perform the
following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file, such as part1.c,
for your main program, and create any other source-code files that you may wish to use. Write the
code for the subroutines that are called by the main program. For the config GIC() subroutine set up
the GIC to send interrupts to the ARM processor from the pushbutton KEYs port.

2. Figure 2 gives the C code required for the interrupt handler. It is declared with the attribute
specification interrupt, and has the special name cs3 isr irq. Using this declaration allows the C
compiler to recognize the code as being the IRQ interrupt handler. The compiler generates an entry
corresponding to this code in the ARM exception-vector table.

You have to write the code for the pushbutton isr() interrupt service routine. Your code should show
the digit 0 on the HEX0 display when KEY0 is pressed, and then if KEY0 is pressed again the display
should be “blank”. You should toggle the HEX0 display between 0 and “blank” in this manner each

1

time KEY0 is pressed. Similarly, toggle between “blank” and 1, 2, or 3 on the HEX1 to HEX3 displays
each time KEY1, KEY2, or KEY3 is pressed, respectively.

The bottom part of Figure 2 provides code, using simple loops, which can be used for the other ARM
exception handlers. Including these handlers in your code is optional, because the C compiler will
generate these handlers automatically if they are not explicitly provided.

3. Make a new Monitor Program project in the folder where you stored your source-code files. In the
Monitor Program screen illustrated in Figure 3, make sure to choose Exceptions in the Linker Section
Presets drop-down menu. Compile, download, and test your program.

int main(void)
{

set A9 IRQ stack (); // initialize the stack pointer for IRQ mode
config GIC (); // configure the general interrupt controller
config KEYs (); // configure pushbutton KEYs to generate interrupts

enable A9 interrupts (); // enable interrupts in the A9 processor

while (1) // wait for an interrupt
;

}

/* Initialize the banked stack pointer register for IRQ mode */
void set A9 IRQ stack(void)
{
· · · code not shown

}
/* Configure the Generic Interrupt Controller (GIC) */
void config GIC(void)
{
· · · code not shown

}
/* Set up the pushbutton KEYs port in the FPGA */
void config KEYs(void)
{
· · · code not shown

}
/* Turn on interrupts in the ARM processor */
void enable A9 interrupts(void)
{
· · · code not shown

}

Figure 1: Main program for Part I.

2

/* Define the IRQ exception handler */
void attribute ((interrupt)) cs3 isr irq (void)
{

/* Read the ICCIAR from the CPU interface in the GIC */
int address = MPCORE GIC CPUIF + ICCIAR;
int int ID = *((int *) address);

if (int ID == KEYS IRQ) // check if interrupt is from the KEYs
pushbutton ISR ();

else
while (1); // if unexpected, then stay here

/* Write to the End of Interrupt Register (ICCEOIR) */
address = MPCORE GIC CPUIF + ICCEOIR;
*((int *) address) = int ID;

return;
}

/* Define the remaining exception handlers */
void attribute ((interrupt)) cs3 reset (void)
{

while (1);
}
void attribute ((interrupt)) cs3 isr undef (void)
{

while (1);
}
void attribute ((interrupt)) cs3 isr swi (void)
{

while (1);
}
void attribute ((interrupt)) cs3 isr pabort (void)
{

while (1);
}
void attribute ((interrupt)) cs3 isr dabort (void)
{

while (1);
}
void attribute ((interrupt)) cs3 isr fiq (void)
{

while (1);
}

Figure 2: Exception handlers.

3

Figure 3: Selecting the Exceptions linker section.

Part II

Consider the main program shown in Figure 4. The code is required to set up the ARM stack pointer
for interrupt mode, initialize some devices, and then enable interrupts. The subroutine config GIC() config-
ures the GIC to send interrupts to the ARM processor from two sources: HPS Timer 0, and the pushbutton
KEYs port. The main program calls the subroutines config HPS timer() and config KEYS() to set up the
two ports. You are to write each of these subroutines. Set up HPS Timer 0 to generate one interrupt every
0.25 seconds.

In Figure 4 the main program executes an endless loop writing the value of the global variable count to the
red lights LEDR. In the interrupt service routine for HPS Timer 0 you are to increment the variable count
by the value of the run global variable, which should be either 1 or 0. You are to toggle the value of the run
global variable in the interrupt service routine for the pushbutton KEYs, each time a KEY is pressed. When
run = 0, the main program will display a static count on the red lights, and when run = 1, the count shown
on the red lights will increment every 0.25 seconds.

Make a new Monitor Program project for this part, and assemble, download, and test your code.

4

int count = 0; // global counter for red lights
int run = 1; // global, used to increment/not the count variable

int main(void)
{

volatile int * LEDR ptr = (int *) 0xFF200000;

set A9 IRQ stack (); // initialize the stack pointer for IRQ mode
config GIC (); // configure the general interrupt controller
config HPS timer (); // configure HPS Timer 0
config KEYs (); // configure pushbutton KEYs to generate interrupts

enable A9 interrupts (); // enable interrupts in the A9 processor

while (1) // wait for an interrupt
*LEDR ptr = count;

}

/* Initialize the banked stack pointer register for IRQ mode */
void set A9 IRQ stack(void)
{
· · · code not shown

}
/* Configure the Generic Interrupt Controller (GIC) */
void config GIC(void)
{
· · · code not shown

}
/* setup HPS timer */
void config HPS timer()
{
· · · code not shown

}
/* Set up the pushbutton KEYs port in the FPGA */
void config KEYs(void)
{
· · · code not shown

}
/* Turn on interrupts in the ARM processor */
void enable A9 interrupts(void)
{
· · · code not shown

}

Figure 4: Main program for Part II.

5

Part III

Modify your program from Part II so that you can vary the speed at which the counter displayed on the
red lights is incremented. All of your changes for this part should be made in the interrupt service routine
for the pushbutton KEYs. The main program and the rest of your code should not be changed.

Implement the following behavior. When KEY0 is pressed, the value of the run variable should be toggled,
as in Part I. Hence, pressing KEY0 stops/runs the incrementing of the count variable. When KEY1 is pressed,
the rate at which the count variable is incremented should be doubled, and when KEY2 is pressed the rate
should be halved. You should implement this feature by stopping HPS Timer 0 within the pushbutton KEYs
interrupt service routine, modifying the load value used in the timer, and then restarting the timer.

Part IV

For this part you are to add a third source of interrupts to your program, using the A9 Private Timer.
Set up the timer to provide an interrupt every 1/100 of a second. Use this timer to increment a global vari-
able called time. You should use the time variable as a real-time clock that is shown on the seven-segment
displays HEX5− 0. Use the format MM:SS:DD, where MM are minutes, SS are seconds and DD are hun-
dredths of a second. You should be able to stop/run the clock by pressing pushbutton KEY3. When the clock
reaches 59:59:99, it should wrap around to 00:00:00.

Make a new folder to hold your Monitor Program project for this part. Modify the main program from
Part III to call a new subroutine, named config priv timer(), which sets up the A9 Private Timer to generate
the required interrupts. To show the time variable in the real-time clock format MM:SS:DD, you can use
the same approach that was followed for Part 4 of Lab Exercise 6. In that previous exercise you used polled
I/O with the private timer, whereas now you are using interrupts. One possible way to structure your code
is illustrated in Figure 5. In this version of the code, the endless loop in the main program writes the values
of variables named HEX code3 0 and HEX code5 4 to the 7-segment displays.

Using the scheme in Figure 5, the interrupt service routine for the private timer has to increment the time
global variable, and also update the HEX code3 0 and HEX code5 4 variables that are being written to the
7-segment displays by the main program.

Make a new Monitor Program project and test your code.

6

int count = 0; // global counter for red lights
int run = 1; // global, used to increment/not the count variable
int time = 0; // global, used for real-time clock
int HEX code3 0 = 0; // global, used for 7-segment displays
int HEX code5 4 = 0; // global, used for 7-segment displays

int main(void)
{

volatile int * LEDR ptr = (int *) 0xFF200000;
volatile int * HEX3 HEX0 ptr = (int *) 0xFF200020
volatile int * HEX5 HEX4 ptr = (int *) 0xFF200030;

set A9 IRQ stack (); // initialize the stack pointer for IRQ mode
config GIC (); // configure the general interrupt controller
config priv timer (); // configure the MPCore private timer
config HPS timer (); // configure HPS Timer 0
config KEYs (); // configure pushbutton KEYs to generate interrupts

enable A9 interrupts (); // enable interrupts in the A9 processor

while (1) // wait for an interrupt
*LEDR ptr = count;
*HEX3 HEX0 ptr = HEX code3 0; // show the time in the format MM:SS:DD
*HEX5 HEX4 ptr = HEX code5 4;

}

· · · code not shown for other subroutines

/* Set up MPCore private timer */
void config priv timer()
{
· · · code not shown

}

· · · code not shown for other subroutines

Figure 5: Main program for Part IV.

Copyright c©2015 Altera Corporation.

7

