
Laboratory Exercise 5
Using Interrupts with Assembly Code

The purpose of this exercise is to investigate the use of interrupts for the ARM A9 processor, using assembly-
language code. To do this exercise you need to be familiar with the exceptions processing mechanisms for
the ARM A9 processor, and with the operation of the ARM Generic Interrupt Controller (GIC). These
concepts are discussed in the tutorials Introduction to the ARM Processor, and Using the ARM Generic
Interrupt Controller. You should also read the parts of the DE1-SoC Computer documentation that pertain
to the use of exceptions and interrupts.

Part I

Consider the main program shown in Figure 1. The code first sets the exceptions vector table for the
ARM processor using a code section called .vectors. Then, in the .text section the main program needs
to set up the stack pointers (for both interrupt mode and supervisor mode), initialize the generic interrupt
controller (GIC), configure the pushbutton KEYs port to generate interrupts, and finally enable interrupts in
the processor. You are to fill in the code that is not shown in the figure.

The function of your program is to show the numbers 0 to 3 on the HEX0 to HEX3 displays, respectively,
when a corresponding pushbutton KEY is pressed. Since the main program simply “idles” in an endless
loop, as shown in Figure 1, you have to control the displays by using an interrupt service routine for the
pushbutton KEYs port.

Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file, such as part1.s,
and type the assembly language code for the main program into this file.

2. Create any other source code files you may want, and write the code for the CONFIG GIC subroutine
that initializes the GIC. Set up the GIC to send interrupts to the ARM processor from the pushbutton
KEYs port.

3. The bottom part of Figure 1 gives the code required for the interrupt handler, SERVICE IRQ. You
have to write the code for the KEY ISR interrupt service routine. Your code should show the digit 0
on the HEX0 display when KEY0 is pressed, and then if KEY0 is pressed again the display should be
“blank”. You should toggle the HEX0 display between 0 and “blank” in this manner each time KEY0

is pressed. Similarly, toggle between “blank” and 1, 2, or 3 on the HEX1 to HEX3 displays each time
KEY1, KEY2, or KEY3 is pressed, respectively.

Figure 2 provides code, using just simple loops, which can be used for the other ARM exception
handlers.

4. Make a new Monitor Program project in the folder where you stored your source-code files. In the
Monitor Program screen illustrated in Figure 3, make sure to choose Exceptions in the Linker Section

1



Presets drop-down menu. Compile, download, and test your program.

.section .vectors, ”ax”
B start // reset vector
B SERVICE UND // undefined instruction vector
B SERVICE SVC // software interrupt vector
B SERVICE ABT INST // aborted prefetch vector
B SERVICE ABT DATA // aborted data vector
.word 0 // unused vector
B SERVICE IRQ // IRQ interrupt vector
B SERVICE FIQ // FIQ interrupt vector

.text

.global start
start:

/* Set up stack pointers for IRQ and SVC processor modes */
· · · code not shown

BL CONFIG GIC // configure the ARM generic interrupt controller

/* Configure the pushbutton KEYs port to generate interrupts
· · · code not shown

/* Enable IRQ interrupts in the ARM processor */
· · · code not shown

IDLE:
B IDLE // main program simply idles

/* Define the exception service routines */

SERVICE IRQ: PUSH {R0-R7, LR}

LDR R4, =0xFFFEC100 // GIC CPU interface base address
LDR R5, [R4, #0x0C] // read the ICCIAR in the CPU interface

FPGA IRQ1 HANDLER:
CMP R5, #73 // check the interrupt ID

UNEXPECTED: BNE UNEXPECTED // if not recognized, stop here

BL KEY ISR
EXIT IRQ: STR R5, [R4, #0x10] // write to the End of Interrupt Register (ICCEOIR)

POP {R0-R7, LR}
SUBS PC, LR, #4 // return from exception

Figure 1: Main program and interrupt service routine.

2



/* Undefined instructions */
SERVICE UND:

B SERVICE UND
/* Software interrupts */
SERVICE SVC:

B SERVICE SVC
/* Aborted data reads */
SERVICE ABT DATA:

B SERVICE ABT DATA
/* Aborted instruction fetch */
SERVICE ABT INST:

B SERVICE ABT INST
SERVICE FIQ:

B SERVICE FIQ

.end

Figure 2: Exception handlers.

Figure 3: Selecting the Exceptions linker section.

3



Part II

Consider the main program shown in Figure 4. The code is required to set up the ARM A9 stack pointers
for interrupt and supervisor modes, and then enable interrupts. The subroutine CONFIG GIC configures
the GIC to send interrupts to the ARM processor from two sources: HPS Timer 0, and the pushbutton KEYs
port. The main program calls the subroutines CONFIG HPS TIMER and CONFIG KEYS to set up the two
ports. You are to write each of these subroutines. Set up HPS Timer 0 to generate one interrupt every 0.25
seconds.

In Figure 4 the main program executes an endless loop writing the value of the global variable COUNT
to the red lights LEDR. In the interrupt service routine for HPS Timer 0 you are to increment the variable
COUNT by the value of the RUN global variable, which should be either 1 or 0. You are to toggle the value
of the RUN global variable in the interrupt service routine for the pushbutton KEYs, each time a KEY is
pressed. When RUN = 0, the main program will display a static count on the red lights, and when RUN = 1,
the count shown on the red lights will increment every 0.25 seconds.

Make a new Monitor Program project for this part, and assemble, download, and test your code.

Part III

Modify your program from Part II so that you can vary the speed at which the counter displayed on the
red lights is incremented. All of your changes for this part should be made in the interrupt service routine
for the pushbutton KEYs. The main program and the rest of your code should not be changed.

Implement the following behavior. When KEY0 is pressed, the value of the RUN variable should be toggled,
as in Part I. Hence, pressing KEY0 stops/runs the incrementing of the COUNT variable. When KEY1 is
pressed, the rate at which COUNT is incremented should be doubled, and when KEY2 is pressed the rate
should be halved. You should implement this feature by stopping HPS Timer 0 within the pushbutton KEYs
interrupt service routine, modifying the load value used in the timer, and then restarting the timer.

Part IV

For this part you are to add a third source of interrupts to your program, using the A9 Private Timer. Set
up the timer to provide an interrupt every 1/100 of a second. Use this timer to increment a global variable
called TIME. You should use the TIME variable as a real-time clock that is shown on the seven-segment
displays HEX3− 0. Use the format SS:DD, where SS are seconds and DD are hundredths of a second. You
should be able to stop/run the clock by pressing pushbutton KEY3. When the clock reaches 59:99, it should
wrap around to 00:00.

Make a new folder to hold your Monitor Program project for this part. Modify the main program from
Part III to call a new subroutine, named CONFIG PRIV TIMER, which sets up the A9 Private Timer to
generate the required interrupts. To show the TIME variable in the real-time clock format SS:DD, you can
use the same approach that was followed for Part 4 of Lab Exercise 4. In that previous exercise you used
polled I/O with the private timer, whereas now you are using interrupts. One possible way to structure your
code is illustrated in Figure 5. In this version of the code, the endless loop in the main program writes the
value of a variable named HEX code to the HEX3− 0 displays.

4



.section .vectors, ”ax”
· · · code not shown

.text

.global start
start:

/* Set up stack pointers for IRQ and SVC processor modes */
· · · code not shown

BL CONFIG GIC // configure the ARM generic interrupt controller
BL CONFIG HPS TIMER // configure HPS Timer 0
BL CONFIG KEYS // configure the pushbutton KEYs port

// Enable IRQ interrupts in the ARM processor
· · · code not shown
LDR R5, =0xFF200000 // LEDR base address

LOOP:
LDR R3, COUNT // global variable
STR R3, [R5] // light up the red lights
B LOOP

/* Configure the HPS timer to create interrupts at 0.25 second intervals */
CONFIG HPS TIMER:

· · · code not shown
BX LR

/* Configure the pushbutton KEYS to generate interrupts */
CONFIG KEYS:

· · · code not shown
BX LR

/* Global variables */
.global COUNT

COUNT: .word 0x0 // used by timer
.global RUN // used by pushbutton KEYs

RUN: .word 0x1 // initial value to increment COUNT

.end

Figure 4: Main program for Part II.

Using the scheme in Figure 5, the interrupt service routine for the private timer has to increment the TIME
variable, and also update the HEX code variable that is being written to the 7-segment displays by the main
program.

Make a new Monitor Program project and test your program.

5



.text

.global start
start:

/* Set up stack pointers for IRQ and SVC processor modes */
· · · code not shown
BL CONFIG GIC // configure the ARM generic interrupt controller
BL CONFIG PRIV TIMER // configure the private timer
BL CONFIG HPS TIMER // configure HPS Timer 0
BL CONFIG KEYS // configure the pushbutton KEYs port

/* Enable IRQ interrupts in the ARM processor */
· · · code not shown
LDR R5, =0xFF200000 // LEDR base address
LDR R6, =0xFF200020 // HEX3-0 base address

LOOP:
LDR R4, COUNT // global variable
STR R4, [R5] // light up the red lights
LDR R4, HEX code // global variable
STR R4, [R6] // show the time in format SS:DD
B LOOP

/* Configure the MPCore private timer to create interrupts every 1/100 seconds */
CONFIG PRIV TIMER:

· · · code not shown
BX LR

/* Configure the HPS timer to create interrupts at 0.25 second intervals */
CONFIG HPS TIMER:

· · · code not shown
BX LR

/* Configure the pushbutton KEYS to generate interrupts */
CONFIG KEYS:

· · · code not shown
BX LR

/* Global variables */
.global COUNT

COUNT: .word 0x0 // used by timer
.global RUN // used by pushbutton KEYs

RUN: .word 0x1 // initial value to increment COUNT
.global TIME

TIME: .word 0x0 // used for real-time clock
.global HEX code

HEX code: .word 0x0 // used for 7-segment displays

.end

Figure 5: Main program for Part IV.

Copyright c©2015 Altera Corporation.

6


