
Laboratory Exercise 8
Introduction to Graphics and Animation

The purpose of this exercise is to learn how to display images and perform animation. We will use the Nios
II processor, in the pre-build DE-series computer systems. Graphics will be displayed on a VGA terminal
by using the computers’ video-out port. To do this exercise you need to know how to use C code with the
Nios II processor, and how to use the video-out port. For Part IV of the exercise you also need to know how
to use C code with interrupts for the Nios II processor. You should be familiar with the material in your
board’s computer documentation that pertain to the use of exceptions and interrupts with C code, in addition
to the material about the video-out port.

Background Information

The three computer systems used with this exercise include a video-out port with a VGA controller that
can be connected to a standard VGA monitor. The VGA controller supports a screen resolution of 640 ×
480. The image that is displayed by the VGA controller is derived from two sources: a pixel buffer, and a
character buffer. Only the pixel buffer will be used in this exercise, hence we will not discuss the character
buffer.

Pixel Buffer

The pixel buffer for the video-out port holds the data (color) for each pixel that is displayed by the VGA
controller. As illustrated in Figure 1, the pixel buffer provides an image resolution of 320 × 240 pixels,
with the coordinate 0,0 being at the top-left corner of the image. Since the VGA controller supports the
screen resolution of 640 × 480, each of the pixel values in the pixel buffer is replicated in both the x and y
dimensions when it is being displayed on the VGA screen.

3190

. . .

1 2 3

. .
 .

. .
 .

. . .

. . .

0
1
2

. .
 .

239

x

y

Figure 1: Pixel buffer coordinates.

1

Figure 2a shows that each pixel color is represented as a 16-bit halfword, with five bits for the blue and
red components, and six bits for green. As depicted in part b of Figure 2, pixels are addressed in the
pixel buffer by using the combination of a base address and an x,y offset. In the computer systems the
default address of the pixel buffer is 0x08000000, which corresponds to the starting address of the FPGA
on-chip memory. Using this scheme, the pixel at location 0,0 has the address 0x08000000, the pixel
1,0 has the address base + (00000000 000000001 0)2 = 0x08000002, the pixel 0,1 has the address base
+ (00000001 000000000 0)2 = 0x08000400, and the pixel at location 319,239 has the address base +
(11101111 100111111 0)2 = 0x0803BE7E.

31 . . . 1. . .1017

00000000000000

918

xy

. . .

(a) Pixel color

(b) Pixel (x,y) offset

0

0

15 . . . 0. . .510

red

411

bluegreen

. . .

Figure 2: Pixel values and addresses.

You can create an image by writing color values into the pixel addresses as described above. A dedicated
pixel buffer controller reads this pixel data from the memory and sends it to the VGA display. The controller
reads the pixel data in sequential order, starting with the pixel data corresponding to the upper-left corner
of the VGA screen and proceeding to read the whole buffer until it reaches the data for the lower-right
corner. This process is then repeated, continuously. You can modify the pixel data at any time, by writing
to the pixel addresses. Writes to the pixel buffer are automatically interleaved in the hardware with the read
operations that are performed by the pixel buffer controller.

It is also possible to prepare a new image for the VGA display without changing the content of the pixel
buffer, by using the concept of double-buffering. In this scheme two pixel buffers are involved, called the
front and back buffers, as described below.

Double Buffering

As mentioned above, a pixel buffer controller reads data out of the pixel buffer so that it can be displayed
on the VGA screen. This pixel buffer controller includes a programming interface in the form of a set of
registers, as illustrated in Figure 3 and Figure ??. The Buffer and Backbuffer registers each store the starting
address of a pixel buffer. The Buffer register holds the address of the pixel buffer that is displayed on the
VGA screen. As mentioned above, in the default configuration this Buffer register is set to the address
0x08000000. The default value of the Backbuffer register is also 0x08000000, which means that there is
only one pixel buffer. Software can modify the address stored in the Backbuffer register, thereby creating a
second pixel buffer. An image can be drawn into this second buffer by writing to its pixel addresses. This
image is not displayed on the VGA monitor until a pixel buffer swap is performed, as explained below.

A pixel buffer swap is caused by writing the value 1 to the Buffer register. This write operation does
not directly modify the content of the Buffer register, but instead causes the contents of the Buffer and

2

Backbuffer registers to be swapped. The swap operation does not happen right away; it occurs at the end of
a VGA screen-drawing cycle, after the last pixel in the bottom-right corner has been displayed. This time
instance is referred to as the vertical synchronization time, and occurs every 1/60 seconds. Software can poll
the value of the S bit in the Status register to see when the vertical synchronization has happened. Writing
the value 1 into the Buffer register causes S to be set to 1. Then, when the swap of the Buffer and Backbuffer
registers has been completed S is reset back to 0. The Status register shown in Figure 3 contains additional
bits of information, but these bits are not needed for this exercise. Also, the programming interface includes
a Resolution register, shown in the figure, that contains the X and Y resolution of the pixel buffer(s).

Address 01531 . . .

0xFF203020

0xFF203024

. . .

A S

1

XY

16 223

front buffer address

0xFF203028

back buffer address

0xFF20302C

3

B

. . .7

m n

48. . .24

Backbuffer register

Resolution register

Status register

Buffer register

Unused Unused

Figure 3: Pixel buffer controller registers.

In a typical application the pixel buffer controller is used as follows. While the image contained in the pixel
buffer that is pointed to by the Buffer register is being displayed, a new image is drawn into the pixel buffer
pointed to by the Backbuffer register. When this new image is ready to be displayed, a pixel buffer swap
is performed. Then, the pixel buffer that is now pointed to by the Backbuffer register, which was already
displayed, is cleared and the next new image is drawn. In this way, the next image to be displayed is always
drawn into the “back” pixel buffer, and the “front” and “back” buffer pointers are swapped when the new
image is ready to be displayed. Each time a swap is performed software has to synchronize with the VGA
controller by waiting until the S bit in the Status register becomes 0.

Part I

In this part you will learn how to implement a simple line-drawing algorithm.

Drawing a line on a screen requires coloring pixels between two points (x1, y1) and (x2, y2), such that the
pixels represent the desired line as closely as possible. Consider the example in Figure 4, where we want
to draw a line between points (1, 1) and (12, 5). The squares in the figure represent the location and size
of pixels on the screen. As indicated in the figure, we cannot draw the line precisely—we can only draw
a shape that is similar to the line by coloring the pixels that fall closest to the line’s ideal location on the
screen.
We can use algebra to determine which pixels to color. This is done by using the end points and the slope
of the line. The slope of our example line is slope = (y2 − y1)/(x2 − x1) = 4/11. Starting at point (1, 1)
we move along the x axis and compute the y coordinate for the line as follows:

y = y1 + slope× (x− x1)

Thus, for column x = 2, the y location of the pixel is 1+ 4
11×(2−1) = 1 4

11 . Since pixel locations are defined
by integer values we round the y coordinate to the nearest integer, and determine that in column x = 2 we

3

(1,1)

(12,5)

Figure 4: Drawing a line between points (1, 1) and (12, 5).

should color the pixel at y = 1. For column x = 3 we perform the calculation y = 1+ 4
11 × (3− 1) = 1 8

11 ,
and round the result to y = 3. Similarly, we perform such computations for each column between x1 and
x2.

The approach of moving along the x axis has drawbacks when a line is steep. A steep line spans more rows
than it does columns, and hence has a slope with absolute value greater than 1. In this case our calculations
will not produce a smooth-looking line. Also, in the case of a vertical line we cannot use the slope to make
a calculation. To address this problem, we can alter the algorithm to move along the y axis when a line
is steep. With this change, we can implement a line-drawing algorithm known as Bresenham’s algorithm.
Pseudo-code for this algorithm is given in Figure 5. The first 15 lines of the algorithm make the needed
adjustments depending on whether or not the line is steep. Then, in lines 17 to 22 the algorithm increments
the x variable 1 step at a time and computes the y value. The y value is incremented when needed to stay
as close to the ideal location of the line as possible. Bresenham’s algorithm calculates an error variable
to decide whether or not to increment each y value. The version of the algorithm shown in Figure 5 uses
only integers to perform all calculations. To understand how this algorithm works, you can read about
Bresenham’s algorithm in a textbook or by searching for it on the internet.
Perform the following:

1. Write a C-language program that implements Bresenham’s line-drawing algorithm, and uses this
algorithm to draw a few lines on the screen. An example of a suitable main program is given in
Figure 6. The code first determines the address of the pixel buffer by reading from the pixel buffer
controller, and stores this address into the global variable pixel_buffer_start. The main program
clears the screen, and then draws four lines. An example of a function that uses the global variable
pixel_buffer_start is shown at the end of Figure 6. The function plot_pixel () sets the pixel at location
x, y to the color line_color.

2. Create a new Monitor Program project for your DE-series board computer to use with your C code.

3. Connect a VGA monitor to your DE-series board, and compile and run your program.

4

1 draw_line(x0, x1, y0, y1)
2
3 boolean is_steep = abs(y1 − y0) > abs(x1 − x0)
4 if is_steep then
5 swap(x0, y0)
6 swap(x1, y1)
7 if x0 > x1 then
8 swap(x0, x1)
9 swap(y0, y1)
10
11 int deltax = x1 − x0
12 int deltay = abs(y1 − y0)
13 int error = −(deltax / 2)
14 int y = y0
15 if y0 < y1 then y_step = 1 else y_step = −1
16
17 for x from x0 to x1
18 if is_steep then draw_pixel(y,x) else draw_pixel(x,y)
19 error = error + deltay
20 if error ≥ 0 then
21 y = y + y_step
22 error = error − deltax

Figure 5: Pseudo-code for a line-drawing algorithm.

Part II

Animation is an exciting part of computer graphics. Moving a displayed object is an illusion created by
showing this same object at different locations on the screen. A simple way to “move” an object is to first
draw the object at one position, and then after a short time erase the object and draw it again at another
nearby position.

To realize animation it is necessary to move objects at regular time intervals. The VGA controller in the
DE-series computers redraw the screen every 1/60th of a second. Since the image on the screen cannot
change more often than that, it is reasonable to control an animation using this unit of time.

To ensure that you change the image only once every 1/60th of a second, use the pixel buffer controller
to synchronize with the vertical synchronization cycle of the VGA controller. As we discussed in the
background section of this exercise, synchronizing with the VGA controller can be accomplished by writing
the value 1 into the Buffer register in the pixel buffer controller, and then waiting until bit S of the Status
register becomes equal to 0. For this part of the exercise you do not need to use a back buffer, so ensure
that the Buffer and Backbuffer addresses in the pixel buffer controller are the same. In this approach, a pixel
buffer “swap” can be used as a way of synchronizing with the VGA controller via the S bit in the Status
register.

5

volatile int pixel_buffer_start; // global variable

int main(void)
{

volatile int * pixel_ctrl_ptr = (int *) /* Insert Pixel Buffer base address */;
/* Read the location of the pixel buffer from the pixel buffer controller */
pixel_buffer_start = *pixel_ctrl_ptr;

clear_screen ();
draw_line(0, 0, 150, 150, 0x001F); // this line is blue
draw_line (150, 150, 319, 0, 0x07E0); // this line is green
draw_line (0, 239, 319,239 , 0xF800); // this line is red
draw_line (319, 0, 0, 239, 0xF81F); // this line is a pink color

}

· · · code not shown for clear_screen() and draw_line() subroutines

void plot_pixel(int x, int y, short int line_color)
{

*(short int *)(pixel_buffer_start + (y << 10) + (x << 1)) = line_color;
}

Figure 6: Main program for Part I.

Perform the following:

1. Write a C-language program that moves a horizontal line up and down on the screen and “bounces”
the line off the top and bottom edges of the display. Your program should first clear the screen and
draw the line at a starting row on the screen. Then, in an endless loop you should erase the line (by
drawing the line using black), and redraw it one row above or below the last one. When the line
reaches the top, or bottom, of the screen it should start moving in the opposite direction.

2. Make a new Monitor Program project to test your code. Notice how long it takes for the horizontal
line to move through the 240 lines of the VGA display. It should take 240× 1/60 = 4 seconds.

Part III

Having gained the basic knowledge about displaying images and animations, you can now create a more
interesting animation.

You are to create an animation of eight small filled rectangles on the screen. These rectangles should appear
to be moving continuously and “bouncing” off the edges of the screen. The rectangles should be connected
with lines to form a chain. An illustration of the animation is given in Figure 7. Part a of the figure shows
one position of the rectangles with arrows that indicate the directions of movement, and Figure 7b shows a
subsequent position of the rectangles. In each step of your animation each of the rectangles should appear
to “move” on a diagonal line: up/left, up/right, down/left, or down/right. Move the rectangles one row and
one column at a time on the VGA screen.

6

(a) (b)

Figure 7: Two instants of the animation.

To make the animation look slightly different each time you run it, use the C library function rand () to help
calculate initial positions for each of the rectangles, and to determine their directions of movement.

Perform the following:

1. Write a C-language program to implement your animation. Use both a front and back buffer in
your program, so that you can avoid making changes to the image while it is being displayed by the
pixel buffer controller. An example of a suitable main program is given in Figure 8. The code sets
addresses, using arrays in memory, for both the front and back pixel buffers. In each iteration of
the while loop the code clears the entire screen, draws the rectangles and lines, and then updates the
locations of rectangles. At the bottom of the while loop the code calls the function wait_for_vsync (),
which synchronizes with the VGA controller and swaps the front and back pixel buffer pointers.

2. Make a new Monitor Program project to test your code.

3. Experiment with your code by modifying it to use just a single pixel buffer (simply change the address
of the back buffer to be the same as the front buffer). Explain what you see on the VGA screen as a
result of this change.

7

volatile int pixel_buffer_start; // global variable
short int front_pixel_buffer[512 * 256]; //allocate memory for front buffer
short int back_pixel_buffer[512 * 256]; //allocate memory for back buffer
int main(void)
{

volatile int * pixel_ctrl_ptr = (int *) /* Insert Pixel Buffer base address */;
· · · declare other variables (not shown)
· · · initialize location and direction of rectangles (not shown)
/* initialize the location of the front pixel buffer in the pixel buffer controller */
*(pixel_ctrl_ptr + 1) = front_pixel_buffer; // first store the address in the back buffer
/* now, swap the front and back buffers, to initialize front pixel buffer location */
wait_for_vsync ();
/* initialize a pointer to the pixel buffer, used by drawing functions */
pixel_buffer_start = *pixel_ctrl_ptr;
clear_screen(); // pixel_buffer_start points to the pixel buffer

/* set a location for the back pixel buffer in the pixel buffer controller */
*(pixel_ctrl_ptr + 1) = back_pixel_buffer;
pixel_buffer_start = *(pixel_ctrl_ptr + 1); // we draw on the back buffer

while (1)
{

/* Erase any boxes and lines that were drawn in the last iteration */
clear_screen(); // pixel_buffer_start points to the pixel buffer

· · · code for drawing the boxes and lines (not shown)
· · · code for updating the locations of boxes (not shown)

wait_for_vsync (); // swap front and back buffers on VGA vertical sync
pixel_buffer_start = *(pixel_ctrl_ptr + 1); // update back buffer pointer

}
}

· · · code for subroutines (not shown)

Figure 8: Main program for Part III.

Part IV

For this part of the exercise you are to enhance the animation from Part III so that during the animation the
following changes can take place:

1. The speed of movement of the rectangles can increased or decreased

2. The number of rectangles can be increased or decreased

3. The lines between rectangles can be drawn or not drawn

8

In Part III the speed of animation was set by the 1/60 seconds VGA vertical synchronization time. One way
to structure the program such that the animation timing can be changed is to use regular interrupts from a
timer. In this scheme the timer interrupt service routine would move the rectangles, draw them on the back
buffer, and then perform a buffer swap. Reducing the timer frequency would cause the animation to appear
to move more slowly. Increasing the timer frequency would make the animation move more quickly, with
the maximum speed being limited by the 1/60 seconds VGA synchronization time, as it was in Part III. To
cause the animation to appear to move more quickly than in Part III, you have to increase the amount that
the rectangles are moved for each redraw cycle (interrupt).

Perform the following:

1. Implement the speed control discussed above for the animation. The speed of animation should
approximately double when you press pushbutton KEY0 and SW0 is set to the 1 position, and it should
reduce by the same amount when you press KEY0 and SW0 is low. Pressing KEY1 should increase the
number of rectangles to some maximum of your choosing. When the maximum number of rectangles
are being displayed, the next press of KEY1 should cause the screen to display one rectangle. You
can process the pushbutton KEYs using either polled I/O or using interrupts. Finally, when the slider
switch SW1 is set to the 1 position the lines between rectangles should not be drawn; only when SW1

is set to the 0 position should the lines appear.

2. Make a new Monitor Program project to test your code.

3. Add any other animation features that you may find interesting.

9

Copyright c© 1991-2017 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

10

	Background Information
	Pixel Buffer
	Double Buffering

	Part I
	Part II
	Part III
	Part IV

