
Laboratory Exercise 6
Using C code with the Nios II Processor

This is an exercise in using C code with the Nios II processor. We will use the Aardvark Monitor Program
software to compile, load, and run application programs written in the C language. In this exercise you
have to be familiar with both the C language and the Nios II assembly language. You should read the parts
of the Monitor Program tutorial that discuss the use of C code. This tutorial can be accessed from Intel’s
FPGA University Program website, or by selecting Help > Tutorial within the Monitor Program software.
You also need to be familiar with a number of I/O ports in the DE0-Nano-SoC or DE-Nano Computers
(depending on which board you are using), including the parallel ports connected to the green LEDs, and
pushbutton switches, as well as the Interval Timer port. These I/O ports are described in the documentation
for the DE0-Nano-SoC and DE0-Nano Computers.

Part I

In Exercise 1, Part II, you were given a program in the Nios II assembly language that finds the largest
number in a list of 32-bit integers that is stored in the memory. This code is reproduced in Figure 1. For this
exercise you are to write a C-language program that implements this task. Perform the following steps.

1. Write your C code in a file called part1.c. You should use the green LED lights to display the
result produced by the program. The parallel port in the DE0-Nano-SoC Computer connected to the
green lights is memory-mapped at the address 0xFF200000, as illustrated in Figure 5. If you are
using the DE0-Nano board, the green LED lights are memory-mapped at address 0x10000010, not
0xFF200000.

To include a list of data words in the C program, you can declare them as an array using a statement
such as

int LIST[8] = {7, 4, 5, 3, 6, 1, 8, 2}; // number of elements, element 1, element 2, ...

2. Make a new Monitor Program project for this part of the exercise. In the Monitor Program screen
shown in Figure 2 select C Program in the Program Type dropdown menu, and on the screen that
follows select your part1.c file. In the screen of Figure 3 set the Terminal device to JTAG UART.
This setting causes the output to appear in the Terminal window of the Monitor Program graphical
user interface.

Compile and download your program. Examine the disassembled code and compare it to the code
shown in Figure 1. To see the assembly code corresponding to your C source code, use the Goto
instruction dialog box in the Monitor Program’s Disassembly window. As illustrated in Figure 4,
type main in the dialog box and then click on the Go button to display your code. When you run the

1

program, the result produced by the program should be displayed in binary format on the green LED
lights.

/* Program that finds the largest number in a list of integers */
.text
.global start

start:
movia r8, RESULT # r8 points to result location
ldw r4, 4(r8) # r4 is a counter, initialize it with N
addi r5, r8, 8 # r5 points to the first number
ldw r2, (r5) # r2 holds the largest number found so far

LOOP: subi r4, r4, 1 # decrement the counter
beq r4, r0, DONE # finished if r4 is equal to 0
addi r5, r5, 4 # increment the list pointer
ldw r6, (r5) # get the next number
bge r2, r6, LOOP # check if larger number found
mov r2, r6 # update the largest number found
br LOOP

DONE: stw r2, (r8) # store the largest number into RESULT

STOP: br STOP # remain here when done

RESULT: .skip 4 # space for the largest number found
N: .word 7 # number of entries in the list
NUMBERS: .word 4, 5, 3, 6 # numbers in the list . . .

.word 1, 8, 2 # . . .

.end

Figure 1: Assembly-language program that finds the largest number.

Part II
On the DE0-Nano and DE0-Nano-SoC Computers, the Nios II processor does not have access to enough
memory to use library functions like printf (in the stdio.h library). In this section you will write C language
functions to display the result of your program written in Part I on the JTAG terminal window. You should
write functions to:

• Print a single ASCII character to the JTAG UART terminal

• Print a null terminated string (char* or char[])

• Convert an integer into a string

• Print an integer to the JTAG UART terminal

2

Theses functions should be similar to the subroutines used to display the COUNT variable in Exercise
4, Part IV. Modify your program from Part I to print a message to the JTAG UART terminal with the results,
instead of using the green lights LED.

Compile, download, and run this program.

Figure 2: Setting the program type.

3

Figure 3: Configuring the Terminal window.

4

Figure 4: Displaying the code for the C program.

0xFF200000

LED0LED7

Address

031 78 . . .Unused Data register

Figure 5: The parallel port connected to the green lights LED on the DE0-Nano-SoC Computer.

Part III

In Exercise 2 you were given a program that uses shift and AND operations to find the longest string of
1’s in a word of data. The program is reproduced in Figure 6. In Parts III and IV of Exercise 2 you were
asked to extend this program so that it processed a list of data words, rather than just one word. Also, the
program was extended to compute the longest strings of 1’s, the longest string of 0’s, and the longest string
of alternating 1’s and 0’s for any of the words in the list. The results of these computations were to be shown
on the Terminal window of the Monitor Program. For this part of the exercise, you are to write a C-language
program to implement these tasks.

5

/* Program that counts consecutive ones */
.text
.global start

start:
ldw r9, TEST NUM(r0) /* Load the data into r9 */

mov r10, r0 /* r10 will hold the result */
LOOP: beq r9, r0, END /* Loop until r9 contains no more 1s */

srli r11, r9, 0x01 /* Count the 1s by shifting the number and */
and r9, r9, r11 /* ANDing it with the shifted result */
addi r10, r10, 0x01 /* Increment the counter */
br LOOP

END: br END /* Wait here */

TEST NUM: .word 0x3fabedef /* The number to be tested */
.end

Figure 6: Assembly-language program that counts consecutive ones.

To include the list of data words in your C program, you can declare them as an array using a statement
such as

int TEST NUM[] = {0x0000e000, 0x3fabedef, 0x00000001, 0x00000002, 0x75a5a5a5,
0x01ffC000, 0x03ffC000, 0x55555555, 0x77777777, 0x08888888,
0x00000000};

Display the count for the longest string of 1’s, 0’s, and alternating 1’s and 0’s on the Terminal window.

Create a new folder and Monitor Program project for your C program, and then compile, download, and
test the code. Using the ten words of test data shown above, the correct result that should appear on the
Terminal window is:

Longest string of ones: 12
Longest string of zeros: 31

Longest string of alternating ones/zeros: 32

6

Part IV

In this part of the exercise you are to write a C program that implements a real-time clock. Display the
clock-time on the Terminal window in the format MM:SS:DD, where MM are minutes, SS are seconds, and
DD are hundredths of a second. Pressing pushbutton KEY0 should reset the time and display 00:00:00 on
the next line of the Terminal window. Since you cannot update the Terminal window at the rate of 1/100
seconds (the communication speed with the Terminal is too slow), you should display the current time,
on the next line of the Terminal, only when pushbutton KEY1 is pressed. Measure time intervals of 0.01
seconds in your program by using polled I/O with the Interval Timer (a similar exercise was described in
Part IV of Exercise 4, but using time intervals of 1 second). When the clock reaches 59:59:99 it should
wrap around to 00:00:00. Note that the DE0-Nano is not able to use KEY0 because it is hardwired to reset
the processor. If you are using the DE0-Nano board (and not the DE0-Nano-SoC board), simply ignore the
resetting with KEY0 feature.

Make a new folder to hold your Monitor Program project for this part. Create a file called part4.c and
type your C code into this file. Make a new Monitor Program project for this part of the exercise, and then
compile, download, and test your program.

Part V

Write a C program that scrolls the message DE0-Nano-SoC (or any message of your choice) in the
right-to-left direction on the Terminal window. The contents of the display as the message scrolls should
appear as illustrated in Table 1. You should scroll the display at a rate of 0.25 seconds per character. You
should be able to stop/run the scrolling message by pressing any pushbutton KEY. It is not necessary to
scroll the message all the way from the right-hand side of the Terminal window; just start the message far
enough to the right so that you can achieve the scrolling-effect illustrated in Table 1.

Time slot Display

0 D
1 D E
2 D E 0
3 D E 0 -
4 D E 0 - N
5 D E 0 - N a
6 D E 0 - N a n
7 D E 0 - N a n o
8 D E 0 - N a n o -
9 D E 0 - N a n o - S
10 D E 0 - N a n o - S o
11 D E 0 - N a n o - S o C
12 E 0 - N a n o - S o C
13 0 - N a n o - S o C
14 - N a n o - S o C
15 N a n o - S o C
.

Table 1. Scrolling the message DE0-Nano-SoC on the Terminal window.

7

You may want to make use of the video-terminal command shown below. Sending this string of characters
to the Terminal window causes it to return the “cursor” to the top-left corner of the window. The command
can be declared as a string, named home in this example, that can be sent to the Terminal window:

char home[] = ”\033[H”;

Note that scrolling a message across the Terminal window is similar in nature to the task of implementing
a real-time clock, from Part IV. You should be able to reuse most of your code from Part IV. But instead
of updating the clock display each time the A9 Private Timer expires, you need to update the scrolling
message.

Make a new folder to hold your Monitor Program project for this part. Create a file called part5.c and type
your C code into this file. Make a new Monitor Program project, compile, download, and test your program.

8

Copyright c© 1991-2016 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

9

