Laboratory Exercise 1

Using an ARM Cortex-A9 System

This is an introductory exercise using the ARM Cortex-A9 processor that is included in Altera’s Cyclone V
SoC devices. The exercise uses a pre-defined computer system called the DEO-Nano-SoC Computer, which
includes the A9 processor and various peripheral devices. The system is implemented as a circuit that is
downloaded into the FPGA device on an Altera DEO-Nano-SoC board. This exercise illustrates how pro-
grams written in the ARM assembly language can be executed on the DEO-Nano-SoC board. We will use
the Altera Monitor Program software to compile, load, and run the application programs.

For this exercise you have to know the ARM processor architecture and its assembly language. Read the
tutorial Introduction to the ARM Processor. You also have to become familiar with the Monitor Program;
read the tutorial Altera Monitor Program Tutorial for ARM. Both tutorials are available in Altera’s Univer-
sity Program web site. The Monitor Program tutorial can also be accessed by selecting Help > Tutorial
within the Monitor Program software.

Part1

In this part you will use the Altera Monitor Program to set up an ARM software development project
using the DEO-Nano-SoC Computer. Perform the following:

1. Make sure that the power is turned on for the Altera DEO-Nano-SoC board.

2. Open the Altera Monitor Program software, which leads to the window in Figure 1.

To develop ARM software code using the Monitor Program it is necessary to create a new project.
Select File > New Project to reach the window in Figure 2. Give the project a name and indicate
the folder for the project; we have chosen the project name labl_partl in the folder Exercisel\Partl,
as indicated in the figure. Use the drop-down menu shown in Figure 2 to set the target architecture to
the ARM Cortex-A9 processor. Click Next, to get the window in Figure 3.

3. Now, you can select your own custom computer system (if you have one) or a pre-designed (by
Altera) system. Choose the DEO-Nano-SoC Computer and click Next. The display in the window
will now show where files that implement the chosen system are located. If you select a computer
system that you designed yourself, then you have to provide the locations of the corresponding files.
Click Next.

4. In the window in Figure 4 you can specify the type of application programs that you wish to run.
They can be written in either assembly language or the C programming language. Specify that an
assembly language program will be used. The Altera Monitor Program package contains several
sample programs. Select the box Include a sample program with the project. Then, choose the
Getting Started program, as indicated in the figure, and click Next.

5. The window in Figure 5 is used to specify the source file(s) that contain the application program(s).
Since we have selected the Getting Started program, the window indicates the source code file for this

= Altera Monitor Program = B

File Settings Actions Windows Help

HE RBIB 2-mniby (1@
Disassembly - ¥ | Registers - %
Goto instructi0n| Address (hex) or symbol name: | @%

2]

L]

[o] []
Disassembly f Breakpoints /'{ Memory /" Watches /{Trace !

Terminal — ¥ | Info & Errors

Info & Errors j GDB Server)l{

Figure 1: The Altera Monitor Program window.

program. This window also allows the user to specify the starting point in the selected application
program. The default symbol is _start, which is used in the selected sample program. Click Next.

. The window in Figure 6 indicates some system parameters. Note that the figure indicates that the
DE-SoC [USB-1] cable is selected to provide the connection between the DEO-Nano-SoC board and
the host computer. This is name assigned to the Altera USB-Blaster connection between the computer
and the board. Click Next.

. The window in Figure 7 displays the names of Assembly sections that will be used for the program,
and allows the user to select a target memory location for each section. In this case only the .rext
section, which corresponds to the program code (and data), is defined. As shown in the figure, the
.text section is targeted to the DDR3 memory in the DEO-Nano-SoC Computer, starting at address O.
Click Finish to complete the specification of the new project.

. Since you specified a new project, a pop-up box will appear asking you if you want to download the
system associated with this project onto the DEO-Nano-SoC board. Make sure that the power to the
board is turned on and click Yes. After the download is complete, a pop-up box will appear informing
you that the circuit has been successfully downloaded - click OK. If the circuit is not successfully
downloaded, make sure that the USB connection, through which the USB-Blaster communicates, is
established and recognized by the host computer. (If there is a problem, a possible remedy may be to
unplug the USB cable and then plug it back in.)

g MNew Project Wizard

Specify a project name and directory

Project directory:

|D:\,Excars|ze1\Part1 ‘ | Browee... |

Project name:

|\ab 1_partl

Architecture: [ARM Cortex-AS

&

Project directory does not exist, The new project directory, "Excersize1/Part1”, will be created in "D:/”

[<Back | [Next > | [Finish | [gancel |

Figure 2: Specify the folder and the name of the project.

9. Having downloaded the DEO-Nano-SoC Computer into the Cyclone V SoC chip on the DEO-Nano-

10.

11.

SoC board, we can now load and run the sample program. In the main Monitor Program window,
shown in Figure 8, select Actions > Compile & Load to assemble the program and load it into the
FPGA chip. Figure 8 shows the Monitor Program window after the sample program has been loaded.

Run the program by selecting Actions > Continue or by clicking on the toolbar icon ¥, and observe
the patterns displayed on the LEDs.

Pause the execution of the sample program by clicking on the icon ', and disconnect from this
session by clicking on the icon &,

4 Mew Project Wizard

Specify a system

Figure 3: Specification of the system.

4 New Project Wizard

Specify a program type

Program

JTAG UART
terrupt Example
A9 Generic Interrupt Contr
A9 Timer Example

Figure 4: Selection of an application program.

4 Mew Project Wizard

Specify program details

D:/Excersize1/Parti/getting_started.s

start

Source files highlighted in blue are sample program files, which will be created in the praject directory.

Figure 5: Source files used by the application program.

4 New Project Wizard

Specify system parameters

Figure 6: Specify the system parameters.

w

Ble Settngs Actions Windows Help

G Mew Project Wizard x|
Specify program memory settings
Memory opti

Here you can specify section names and their start and end addresses. These sections will be used by the linker

to place code and data at the specified addresses, To ensure correct use of the section names by the linker, the

names must match those identified by the assembler directives, such as .text.

Linker Section Presets: |Basic -

Section Mame | Memary Device | Addresz Range |
.text ARM DDR3_SDRRM 0x00000000 - Ox3FFFFEFF
[<Badk] [Mext >

Figure 7: Specify the program memory settings.

Altera Monitor Program - lab1_part1 : getting_started.srec [Paused] = = -

HE B+E 2000 4§

Disassembly - X
- - Value
Gnmm|addessﬂvex)orswbdname.| | roon0o00n

OxFFFFE104
0x00000011
- 3. if EEV[3..0] is pressed, uses the 5W switches as the r2 0x49535756
r3 OxFFFED40E
text e ra 0xFFFFE0E4
_global atart rs5 0x01000040
starts - ré 0x00000076
MOV RO, #31 r7 OxFFFFF014
ri OxFFFFT74CE
—srart: rd 0x0000007&
Ox00000000 EZA000LF mov 0, #31 10 0xFFDO2000
A right 4llgg 0xFFD02000
LDE Rl, =0xFFz00000 /f base address 12 0x00000007
Ox00000004 ESSFl04C 1dr rl, [pc, #76] ¢ 98 CHEX hits+0xd> = NxFFFFRA500
LDR Rz, =0xFF200020 // base address 1r 0x00000000
0x00000008 ESOFz04c 1dr r?2, [pc, #76] ¢ 5c <HEX hits+bxd> cpsr 0x&00001D3

LDFE. B3, =OxFFz200040 /4 base address |

L =g it v 1=

I

Terminal — x| Info & Errors - %

INFO: Non-memory - ARM RS HPS sdrctl (0xEfc23000 - Oxia
INFO: Non-memory - RRM A9 HPS axi occram (0xf£f£0000 -
INFO: Non-memory - RRM AS HPS axi_adram (0x0 - Ox7iff
INFO: Non-memory - ARM AS HPS timer (Oxfifecé00 - Oxf
INFO: Program Trace is not supported for the Arm AS.

[»]

Info &Errors | GDB Server /

Figure 8: The monitor window showing the loaded sample program.

Part 11

Now, we will explore some features of the Monitor Program by using a simple application program written
in the ARM assembly language. Consider the program in Figure 9, which finds the largest number in a list
of 32-bit integers that is stored in the memory.

/* Program that finds the largest number in a list of integers */
.text
.global _start

_start:

LDR R4, =RESULT // R4 points to result location

LDR R2, [R4, #4] // R2 holds the number of elements in the list

ADD R3, R4, #8 // R3 points to the first number

LDR RO, [R3] // RO holds the largest number so far
LOOP: SUBS R2, R2, #1 // decrement the loop counter

BEQ DONE

ADD R3,R3,#4

LDR R1, [R3] // get the next number

CMP RO, R1 // check if larger number found

BGE LOOP

MOV RO, R1 // update the largerst number

B LOOP
DONE: STR RO, [R4] // store largest number into result location
END: B END
RESULT: .word 0
N: .word 7 // number of entries in the list
NUMBERS: .word 4,5,3,6 // the data

.word 1,8,2

.end

Figure 9: Assembly-language program that finds the largest number.

Note that some sample data is included in this program. The word (4 bytes) at the label RESULT is reserved
for storing the result, which will be the largest number found. The next word, IV, specifies the number of
entries in the list. The words that follow give the actual numbers in the list.

Make sure that you understand the program in Figure 9 and the meaning of each instruction in it.
Note the extensive use of comments in the program. You should always include meaningful comments in
programs that you will write!

Perform the following:

1. Create a new folder for this part of the exercise, with a name such as Part2. Create a file named part2.s
and enter the code from Figure 9 into this file. Use the Monitor Program to create a new project in
this folder; we have chosen the project name part2. When you reach the window in Figure 4 choose
Assembly Program but do not select a sample program. Click Next.

2. Upon reaching the window in Figure 5, you have to specify the source code file for your program.
Click Add and in the pop-up box that appears indicate the desired file name, part2.s. Click Next to
get to the window in Figure 6. Again click Next to get to the window in Figure 7. Notice that the
DDR3_SDRAM is selected as the memory device. Your program will be loaded starting at address 0
in this memory. Click Finish.

3. Compile and load the program.

4. The Monitor Program will display a disassembled view of the machine code loaded in the memory, as
indicated in Figure 10. Note that the pseudo instruction LDR R4, =RESULT from your source code
has been implemented by using the instruction, LDR R4, [PC, #84]. This instruction loads the 32-bit
address of the label RESULT into register R4. After this instruction has been executed, the content of
register R4 will be 0x00000038, because this is the address in the memory of the label RESULT.

The LDR R4, [PC, #84] instruction loads the required 32-bit constant 0x00000038 from the literal
pool, where this value has been placed by the assembler/linker. The address in the literal pool is
calculated as [pc] + 8 + OFFSET, where OFFSET=0x54 in this case (84 in decimal). The reason
that 8 is added has to do with the way that the ARM processor automatically increments its program

counter register as instructions are being executed. Hence, the location in the literal pool where the
processor gets the constant 0X00000038 in this case is 0 + 8 + 0x54 = 0x0000005C.

You can use the Monitor Program Disassembly tab (or the Memory tab) to verify that the constant
0x00000038 is in the literal pool at the address 0x0000005C. Figure 11 shows the literal-pool
constant in the Disassembly window. You can single-step the instruction LDR R4, =RESULT in the
Monitor Program to verify that it sets R4 to the value 0x00000038.

5. Execute the program. When the code is running, you will not be able to see any changes (such as
the contents of registers or memory locations) in the Monitor Program windows, because the Monitor
Program cannot communicate with the ARM processor while code is being executed. But, if you
pause the program then the Monitor Program windows will be updated. Pause the program using the
icon " and observe that the processor stops within the endless loop END: B END. Note that the
largest number found in the sample list is 8 as indicated by the contents of register RO. This result is
also stored in memory at the label RESULT. As discussed above, the address of the label RESULT for
this program is 0x00000038. Use the Monitor Program’s Memory tab, as illustrated in Figure 12, to
verify that the resulting value 8 is stored in the correct location.

6. You can return control of the program to the start by clicking on the icon “=, or by selecting Actions
> Restart. Do this and then single-step through the program by clicking on the icon ‘=*. Watch how
the instructions change the data in the processor’s registers.

i Altera Monitor Program - part2* : part2.srec [Paused] - m} x

File Settings Actions Windows Help
WE He¢EH 2omlk t$
Disassembly — * | Registers - X
Gntninstrucﬁnn| Address (hex) or symbol name:| ‘ M Value
— | lpe 0x00000000
il] OxFFFFFFFF
rl OxFFFF1392
A% Program that finds the largest mumber in a list of integers r2 0x00000001
r3 OxFFFEFCO0
. Lext /¢ executabld rd O0xFFFFECED
.global atart r5 OxFFFF4BC4
start: ré 0x00000076
LDR R4, =RESULT // R4 points to | (77 OxFFFFEOL4
| 8
sare: 8 0xFFFFSFO8
0x00000000 1dr r4, [pc, #84] ¢ 5c <HUMBERS +0x1c>- rin Exgiggggg;
I X
000004 . , LER RZ, [R4, #4] /7 B2 holds number 1 0xFFDO2000
x r2, [rd, #41 ri2 0x0000001C
ADD B3, R4, #3 4/ B3 points to 4 ¢ 0xFFFFECD0
0x00000008 add r3, rd, #8 i OxFFFFL351
LDR. RO, [R3] /4 RO holds the |||cpar 0%200001D3
0x0000000C ldr ©0, [r3] =i
L3
Disassembly|/ Breakpoints | Memory | Watches | Trace
Terminal — X | Info & Errors - X
SYIDULS IUS0ed. 2
arm-altera-eabi-cbjdump -d -5 "-M reg-names-std”™
pbox/U_Program/Laborat ercises/Computer_ O
ropbox/U_Program/Laboratory Exercises/Computer O

Source code loaded.

[}

Info & Errors |' GDB Ser\rerjIr

Figure 10: The disassembled view of the program in Figure 9.

7. Double-click on the pc register in the Monitor Program and then set the program counter to 0. Note
that this action has the same effect as clicking on the restart icon .

8. Now set a breakpoint at address 0x0000002C (by clicking on the gray bar to the left of this address),
so that the program will automatically stop executing whenever the branch instruction at this location
is about to be executed. Restart the program and run it again. Observe the contents of register RO
each time the breakpoint is reached.

Part 111

Implement the task in Part II by modifying the program in Figure 9 so that it uses a subroutine. The subrou-
tine, LARGE, has to find the largest number in a list. The main program passes the number of entries and
the address of the start of the list as parameters to the subroutine via registers RO and R1. The subroutine
returns the value of the largest number to the calling program via register RO. A suitable main program is
given in Figure 13.

Create a new folder and a new Monitor Program project to compile and download your program. Run your
program to verify its correctness.

e Altera Monitor Program - part2*: part2.srec [Paused] - O *

File Settings Actions Windows Help

HE B E 0k &

Disassembly

‘Goto instruction | Address (hex) or symbel name: |

H: 0xFFFF1392
0x0000003C 00000007 aword 0x00000007 000000001

0xFFFEFCO0

HUMEERS : 0x00000038
0x00000040 00000004 e 0x00000004 OxFFFF4BCL
0x00000044 00000005 word 0x00000005 0x00000078
0x00000048 00000003 ord 0x00000003 OxFFFFFOL4
0x0000004C 00000006 amrd 0x00000006 OxFFFFSFOS
0x00000050 00000001 aword 0x00000001 1 g"gigggggg

I. X.

caowouoss | oounoonz | eea wsswweoue:
* “wor * r12 0x0000001C
0x0000005C 00000038 aword 0x00000038 . 0xFFFFSCD0
0x00000060 00000000 22 1r ORFFFF1351
0x00000064 00000000 22 cpar 0x200001D3
0x00000065 00000000 22 =|
[«] I
Di: J_}.""‘ kpoil }'r" J,}'Walchszlacel'

Terminal — ¥ | Info & Errors — X
SYNCUIE LUS0Ed. =
arm-altera-eabi-objdump -4 -5 "-M reg-names-std”

"D: /Dropbox/U_Program/Laboratory_Exercises/Computer_O:
"D: /Dropbox/U_Program/Laboratory_FExercises/Computer_O

Source code loaded.

[+]

Info & Errors |' GDB Sewm}{

Figure 11: The constant 0X00000038 in the literal pool at address 0X0000005C.

& Altera Monitor Program - part2* : part2.srec [Paused] — O *
File Settings Actions Windows Help
HE G+E WLk ¢

Memory
Goto address (mkl:l [C] Query Memory Mapped Devices
+0x0 +0x 4 +0x5 +0xc
000000000 ES9F4054 ES94z004 E2843008 ES930000
000000010 E2522001 0AODOO0S EZ833004 ES931000
0x00000020 E1500001 AAFFFFF9 ELA00001 EAFFFFF?
0x00000030 ESG40000 EAFFFFFE [QUMUNO9] 00000007 0200000038
0x00000040 00000004 00000005 00000003 00000006 OxFFFF4BCL
0x00000050 00000001 0O0DO0O& — 0OODODOZ DOO0O03E 0x00000076
000000060 00000000 00000000 00000000 0O0DDD78 OxFFFFEOL4
0x00000070 000000O0 00OOOOOO0 ES854000 EAFFFFFC QxFFFESFOS
0x00000030 ES9FO0S0 ESOFLOS0 ESS01000 E3A01007 . E"Eizggggg
I. X.
sy | Emios Bunet tamos T
< riz 020000001C
0x000000E0 ES301008 ELROFOOE ES9FO0ZE E3A0100F o p—
0x000000C0 ESSO0L00E ELAOFODE OOOOOEEC 0ODOODOL e OEFFFT1351
000000000 0000OAOD FF200000 FFFECE00 OBEECZ200 cper 060000103
0x000000ED FFCOBOO0 0OL7D7840 FFZ00050 E920403F El
[«f I
Di: "J)f" kpoints , M, J)fWaichserlacef
Terminal -

"D:/Dropbox/U_Program/Laboratory_Exercises/Computer O

"D:/Dropbox/U_Program/Laboratory Exercises/Computer O
Source code loaded.

ogram stopped @

K1
Info & Errars |' GDB Ser\.re”Ir

[+]

Figure 12: Displaying the result in the memory tab.

10

/* Program that finds the largest number in a list of integers */
text
.global _start

_start:
LDR R4, =RESULT // R4 points to result location
LDR RO, [R4, #4] // RO holds the number of elements in the list
ADD R1, R4, #8 // R1 points to the first number
BL LARGE
STR RO, [R4] // RO holds the subroutine return value
END: B END
LARGE:

RESULT: .word 0
N: .word 7 // number of entries in the list
NUMBERS: .word 4,5,3,6 // the data
.word 1,8,2
.end
Figure 13: Main program for Part II1.
Part IV

The program shown in Figure 14 converts a binary number to two decimal digits. The binary number is
loaded from memory at the location /V, and the two decimal digits that are extracted from NV are stored into
memory in two bytes starting at the location Digits. For the value N = 76 (0x4C) shown in the figure, the
code sets Digits to 00000706.

Make sure that you understand how the code in Figure 14 works. Then, extend the code so that it converts
the binary number to four decimal digits, supporting decimal values up to 9999. You should modify the
DIVIDE subroutine so that it can use any divisor, rather than only a divisor of 10. Pass the divisor to the
subroutine in register R1.

If you run your code with the value N = 9876 (0x2694), then Digits should be set to 09080706.

11

/* Program that converts a binary number to decimal */
.text
.global _start

_start:
LDR R4, =N
ADD RS, R4, #4 /I RS points to the decimal digits storage location
LDR R4, [R4] // R4 holds N
MOV RO, R4 // parameter for DIVIDE goes in RO
BL DIVIDE
STRB R1, [R5, #1] /l Tens digit is in R1
STRB RO, [R5] // Ones digit is in RO
END: B END

/* Subroutine to perform the integer division RO / 10.
* Returns: quotient in R1, and remainder in RO

*/

DIVIDE: MOV R2, #0

CONT: CMP RO, #10
BLT DIV_END
SUB RO, #10
ADD R2, #1
B CONT

DIV_END: MOV R1, R2 // return quotient in R1 (remainder is in R0)
BX LR

N: .word 76 // the decimal number to be converted

Digits: .Space 4 /I storage space for the decimal digits
.end

Figure 14: A program that converts a binary number to two decimal digits.

Copyright (©)2016 Altera Corporation.

12

