
Laboratory Exercise 8
Introduction to Graphics and Animation

The purpose of this exercise is to learn how to display images and perform animation. We will use the
ARM A9 processor, in the DE1-SoC Computer. Graphics will be displayed on a VGA terminal by using
the DE1-SoC Computer’s video-out port. To do this exercise you need to know how to use C code with the
ARM processor, and how to use the video-out port. For Part IV of the exercise you also need to know how
to use C code with interrupts for the ARM processor. Recommended tutorials include Introduction to the
ARM Processor and Using the ARM Generic Interrupt Controller. You should be familiar with the material
in the DE1-SoC Computer documentation that pertain to the use of exceptions and interrupts with C code,
in addition to the material about the video-out port.

Background Information

The DE1-SoC Computer includes a video-out port with a VGA controller that can be connected to a standard
VGA monitor. The VGA controller supports a screen resolution of 640 × 480. The image that is displayed
by the VGA controller is derived from two sources: a pixel buffer, and a character buffer. Only the pixel
buffer will be used in this exercise, hence we will not discuss the character buffer.

Pixel Buffer

The pixel buffer for the video-out port holds the data (color) for each pixel that is displayed by the VGA
controller. As illustrated in Figure 1, the pixel buffer provides an image resolution of 320 × 240 pixels,
with the coordinate 0,0 being at the top-left corner of the image. Since the VGA controller supports the
screen resolution of 640 × 480, each of the pixel values in the pixel buffer is replicated in both the x and y
dimensions when it is being displayed on the VGA screen.

3190

. . .

1 2 3

. .
 .

. .
 .

. . .

. . .

0
1
2

. .
 .

239

x

y

Figure 1: Pixel buffer coordinates.

1

Figure 2a shows that each pixel color is represented as a 16-bit halfword, with five bits for the blue and
red components, and six bits for green. As depicted in part b of Figure 2, pixels are addressed in the
pixel buffer by using the combination of a base address and an x,y offset. In the DE1-SoC Computer the
default address of the pixel buffer is 0xC8000000, which corresponds to the starting address of the FPGA
on-chip memory. Using this scheme, the pixel at location 0,0 has the address 0xC8000000, the pixel
1,0 has the address base + (00000000 000000001 0)2 = 0xC8000002, the pixel 0,1 has the address base
+ (00000001 000000000 0)2 = 0xC8000400, and the pixel at location 319,239 has the address base +
(11101111 100111111 0)2 = 0xC803BE7E.

31 . . . 1. . .1017

00000000000000

918

xy

. . .

(a) Pixel color

(b) Pixel (x,y) offset

0

0

15 . . . 0. . .510

red

411

bluegreen

. . .

Figure 2: Pixel values and addresses.

You can create an image by writing color values into the pixel addresses as described above. A dedicated
pixel buffer controller reads this pixel data from the memory and sends it to the VGA display. The controller
reads the pixel data in sequential order, starting with the pixel data corresponding to the upper-left corner
of the VGA screen and proceeding to read the whole buffer until it reaches the data for the lower-right
corner. This process is then repeated, continuously. You can modify the pixel data at any time, by writing
to the pixel addresses. Writes to the pixel buffer are automatically interleaved in the hardware with the read
operations that are performed by the pixel buffer controller.

It is also possible to prepare a new image for the VGA display without changing the content of the pixel
buffer, by using the concept of double-buffering. In this scheme two pixel buffers are involved, called the
front and back buffers, as described below.

Double Buffering

As mentioned above, a pixel buffer controller reads data out of the pixel buffer so that it can be displayed
on the VGA screen. This pixel buffer controller includes a programming interface in the form of a set of
registers, as illustrated in Figure 3. The register at address 0xFF203020 is called the Buffer register, and
the register at address 0xFF203024 is the Backbuffer register. Each of these registers stores the starting
address of a pixel buffer. The Buffer register holds the address of the pixel buffer that is displayed on
the VGA screen. As mentioned above, in the default configuration of the DE1-SoC Computer this Buffer
register is set to the address 0xC8000000, which points to the start of the FPGA on-chip memory. The
default value of the Backbuffer register is also 0xC8000000, which means that there is only one pixel
buffer. But software can modify the address stored in the Backbuffer register, thereby creating a second
pixel buffer. An image can be drawn into this second buffer by writing to its pixel addresses. This image is
not displayed on the VGA monitor until a pixel buffer swap is performed, as explained below.

2

A pixel buffer swap is caused by writing the value 1 to the Buffer register. This write operation does
not directly modify the content of the Buffer register, but instead causes the contents of the Buffer and
Backbuffer registers to be swapped. The swap operation does not happen right away; it occurs at the end
of a VGA screen-drawing cycle, after the last pixel in the bottom-right corner has been displayed. This
time instance is referred to as the vertical synchronization time, and occurs every 1/60 seconds. Software
can poll the value of the S bit in the Status register, at address 0xFF20302C, to see when the vertical
synchronization has happened. Writing the value 1 into the Buffer register causes S to be set to 1. Then,
when the swap of the Buffer and Backbuffer registers has been completed S is reset back to 0. The Status
register contains additional bits of information, shown in Figure 3, but these bits are not needed for this
exercise. Also, the programming interface includes a Resolution register, shown in the figure, that contains
the X and Y resolution of the pixel buffer(s).

Address 01531 . . .

0xFF203020

0xFF203024

. . .

A S

1

XY

16 223

front buffer address

0xFF203028

back buffer address

0xFF20302C

3

B

. . .7

m n

48. . .24

Backbuffer register

Resolution register

Status register

Buffer register

Unused Unused

Figure 3: Pixel buffer controller registers.

In a typical application the pixel buffer controller is used as follows. While the image contained in the pixel
buffer that is pointed to by the Buffer register is being displayed, a new image is drawn into the pixel buffer
pointed to by the Backbuffer register. When this new image is ready to be displayed, a pixel buffer swap
is performed. Then, the pixel buffer that is now pointed to by the Backbuffer register, which was already
displayed, is cleared and the next new image is drawn. In this way, the next image to be displayed is always
drawn into the “back” pixel buffer, and the “front” and “back” buffer pointers are swapped when the new
image is ready to be displayed. Each time a swap is performed software has to synchronize with the VGA
controller by waiting until the S bit in the Status register becomes 0.

Part I

In this part you will learn how to implement a simple line-drawing algorithm.

Drawing a line on a screen requires coloring pixels between two points (x1, y1) and (x2, y2), such that the
pixels represent the desired line as closely as possible. Consider the example in Figure 4, where we want
to draw a line between points (1, 1) and (12, 5). The squares in the figure represent the location and size
of pixels on the screen. As indicated in the figure, we cannot draw the line precisely—we can only draw
a shape that is similar to the line by coloring the pixels that fall closest to the line’s ideal location on the
screen.

We can use algebra to determine which pixels to color. This is done by using the end points and the slope
of the line. The slope of our example line is slope = (y2 − y1)/(x2 − x1) = 4/11. Starting at point (1, 1)
we move along the x axis and compute the y coordinate for the line as follows:

3

(1,1)

(12,5)

Figure 4: Drawing a line between points (1, 1) and (12, 5).

y = y1 + slope× (x− x1)

Thus, for column x = 2, the y location of the pixel is 1+ 4
11×(2−1) = 1 4

11 . Since pixel locations are defined
by integer values we round the y coordinate to the nearest integer, and determine that in column x = 2 we
should color the pixel at y = 1. For column x = 3 we perform the calculation y = 1+ 4

11 × (3− 1) = 1 8
11 ,

and round the result to y = 3. Similarly, we perform such computations for each column between x1 and
x2.

The approach of moving along the x axis has drawbacks when a line is steep. A steep line spans more rows
than it does columns, and hence has a slope with absolute value greater than 1. In this case our calculations
will not produce a smooth-looking line. Also, in the case of a vertical line we cannot use the slope to make
a calculation. To address this problem, we can alter the algorithm to move along the y axis when a line
is steep. With this change, we can implement a line-drawing algorithm known as Bresenham’s algorithm.
Pseudo-code for this algorithm is given in Figure 5. The first 15 lines of the algorithm make the needed
adjustments depending on whether or not the line is steep. Then, in lines 17 to 22 the algorithm increments
the x variable 1 step at a time and computes the y value. The y value is incremented when needed to stay
as close to the ideal location of the line as possible. Bresenham’s algorithm calculates an error variable
to decide whether or not to increment each y value. The version of the algorithm shown in Figure 5 uses
only integers to perform all calculations. To understand how this algorithm works, you can read about
Bresenham’s algorithm in a textbook or by searching for it on the internet.

Perform the following:

1. Write a C-language program that implements Bresenham’s line-drawing algorithm, and uses this al-
gorithm to draw a few lines on the screen. An example of a suitable main program is given in Figure 6.
The code first determines the address of the pixel buffer by reading from the pixel buffer controller,
and stores this address into the global variable pixel buffer start. The main program clears the screen,
and then draws four lines. An example of a function that uses the global variable pixel buffer start
is shown at the end of Figure 6. The function plot pixel () sets the pixel at location x, y to the color
line color.

2. Create a new Monitor Program project for the DE1-SoC Computer to use with your C code.

3. Connect a VGA monitor to the DE1-SoC board, and compile and run your program.

4

1 draw line(x0, x1, y0, y1)
2
3 boolean is steep = abs(y1 − y0) > abs(x1 − x0)
4 if is steep then
5 swap(x0, y0)
6 swap(x1, y1)
7 if x0 > x1 then
8 swap(x0, x1)
9 swap(y0, y1)
10
11 int deltax = x1 − x0
12 int deltay = abs(y1 − y0)
13 int error = −(deltax / 2)
14 int y = y0
15 if y0 < y1 then y step = 1 else y step = −1
16
17 for x from x0 to x1
18 if is steep then draw pixel(y,x) else draw pixel(x,y)
19 error = error + deltay
20 if error ≥ 0 then
21 y = y + y step
22 error = error − deltax

Figure 5: Pseudo-code for a line-drawing algorithm.

Part II

Animation is an exciting part of computer graphics. Moving a displayed object is an illusion created by
showing this same object at different locations on the screen. A simple way to “move” an object is to first
draw the object at one position, and then after a short time erase the object and draw it again at another
nearby position.

To realize animation it is necessary to move objects at regular time intervals. The VGA controller in the
DE1-SoC Computer redraws the screen every 1/60th of a second. Since the image on the screen cannot
change more often than that, it is reasonable to control an animation using this unit of time.

To ensure that you change the image only once every 1/60th of a second, use the pixel buffer controller
to synchronize with the vertical synchronization cycle of the VGA controller. As we discussed in the
background section of this exercise, synchronizing with the VGA controller can be accomplished by writing
the value 1 into the Buffer register in the pixel buffer controller, and then waiting until bit S of the Status
register becomes equal to 0. For this part of the exercise you do not need to use a back buffer, so ensure
that the Buffer and Backbuffer addresses in the pixel buffer controller are the same. In this approach, a pixel
buffer “swap” can be used as a way of synchronizing with the VGA controller via the S bit in the Status
register.

5

volatile int pixel buffer start; // global variable

int main(void)
{

volatile int * pixel ctrl ptr = (int *) 0xFF203020;
/* Read the location of the pixel buffer from the pixel buffer controller */
pixel buffer start = *pixel ctrl ptr;

clear screen ();
draw line(0, 0, 150, 150, 0x001F); // this line is blue
draw line (150, 150, 319, 0, 0x07E0); // this line is green
draw line (0, 239, 319,239 , 0xF800); // this line is red
draw line (319, 0, 0, 239, 0xF81F); // this line is a pink color

}

· · · code not shown for clear screen() and draw line() subroutines

void plot pixel(int x, int y, short int line color)
{

*(short int *)(pixel buffer start + (y << 10) + (x << 1)) = line color;
}

Figure 6: Main program for Part I.

Perform the following:

1. Write a C-language program that moves a horizontal line up and down on the screen and “bounces”
the line off the top and bottom edges of the display. Your program should first clear the screen and
draw the line at a starting row on the screen. Then, in an endless loop you should erase the line (by
drawing the line using black), and redraw it one row above or below the last one. When the line
reaches the top, or bottom, of the screen it should start moving in the opposite direction.

2. Make a new Monitor Program project to test your code. Notice how long it takes for the horizontal
line to move through the 240 lines of the VGA display. It should take 240× 1/60 = 4 seconds.

Part III

Having gained the basic knowledge about displaying images and animations, you can now create a more
interesting animation.

You are to create an animation of eight small filled rectangles on the screen. These rectangles should appear
to be moving continuously and “bouncing” off the edges of the screen. The rectangles should be connected
with lines to form a chain. An illustration of the animation is given in Figure 7. Part a of the figure shows
one position of the rectangles with arrows that indicate the directions of movement, and Figure 7b shows a
subsequent position of the rectangles. In each step of your animation each of the rectangles should appear
to “move” on a diagonal line: up/left, up/right, down/left, or down/right. Move the rectangles one row and
one column at a time on the VGA screen.

6

(a) (b)

Figure 7: Two instants of the animation.

To make the animation look slightly different each time you run it, use the C library function rand () to help
calculate initial positions for each of the rectangles, and to determine their directions of movement.

Perform the following:

1. Write a C-language program to implement your animation. Use both a front and back buffer in your
program, so that you can avoid making changes to the image while it is being displayed by the pixel
buffer controller. An example of a suitable main program is given in Figure 8. The code sets the
location in memory of both the front and back pixel buffers—the front buffer is set to the start of
the FPGA on-chip memory, and the back buffer to the starting address of the SDRAM chip in the
DE1-SoC Computer. In each iteration of the while loop the code clears the entire screen, draws the
rectangles and lines, and then updates the locations of rectangles. At the bottom of the while loop the
code calls the function wait for vsync (), which synchronizes with the VGA controller and swaps the
front and back pixel buffer pointers.

2. Make a new Monitor Program project to test your code.

3. Experiment with your code by modifying it to use just a single pixel buffer (simply change the address
of the back buffer to be the same as the front buffer). Explain what you see on the VGA screen as a
result of this change.

Part IV

For this part of the exercise you are to enhance the animation from Part III so that during the animation the
following changes can take place:

1. The speed of movement of the rectangles can increased or decreased

2. The number of rectangles can be increased or decreased

3. The lines between rectangles can be drawn or not drawn

7

volatile int pixel buffer start; // global variable

int main(void)
{

volatile int * pixel ctrl ptr = (int *) 0xFF203020;
· · · declare other variables (not shown)
· · · initialize location and direction of rectangles (not shown)
/* initialize the location of the front pixel buffer in the pixel buffer controller */
*(pixel ctrl ptr + 1) = 0xC8000000; // first store the address in the back buffer
/* now, swap the front and back buffers, to initialize front pixel buffer location */
wait for vsync ();
/* initialize a pointer to the pixel buffer, used by drawing functions */
pixel buffer start = *pixel ctrl ptr;
clear screen(); // pixel buffer start points to the pixel buffer
/* Set a location for the pixel back buffer in the pixel buffer controller */
*(pixel ctrl ptr + 1) = 0xC0000000;
pixel buffer start = *(pixel ctrl ptr + 1); // we draw on the back buffer

while (1)
{

/* Erase any boxes and lines that were drawn in the last iteration */
clear screen(); // pixel buffer start points to the pixel buffer

· · · code for drawing the boxes and lines (not shown)
· · · code for updating the locations of boxes (not shown)

wait for vsync (); // swap front and back buffers on VGA vertical sync
pixel buffer start = *(pixel ctrl ptr + 1); // update back buffer pointer

}
}

· · · code for subroutines (not shown)

Figure 8: Main program for Part III.

In Part III the speed of animation was set by the 1/60 seconds VGA vertical synchronization time. One
way to control the speed of animation is to make use of a timer. In this scheme, the main program would
draw the next step of the animation each time the timer expires. Lengthening the timeout would produce a
slower animation, and shortening the timeout would speed up the animation. The maximum speed of the
animation would be limited by the 1/60 seconds VGA synchronization time, as it was in Part III. To cause
the animation to appear to move more quickly than in Part III, you have to increase the screen-distance that
the rectangles move in each step of the animation.

8

Perform the following:

1. Implement the speed control discussed above for the animation. The speed of animation should
approximately double when you press pushbutton KEY0, and it should reduce by the same amount
when you press KEY1. Pressing KEY2 should cause the program to display one fewer rectangle, down
to a minium of one, and pressing KEY3 should increase the number of rectangles to some maximum
of your choosing. You can process the pushbutton KEYs using either polled I/O or using interrupts.
Finally, when any slide switch SW9−0 is set to the 1 position the lines between rectangles should not
be drawn; only when all SW switches are set to the 0 position should the lines appear.

2. Make a new Monitor Program project to test your code.

3. Add any other animation features that you may find interesting.

Copyright c©2016 Altera Corporation.

9

