Laboratory Exercise 6

Using C code with the Nios II Processor

This is an exercise in using C code with the Nios II processor in a DE-Series computer system. We will
use the Intel FPGA Monitor Program software to compile, load, and run application programs written in
the C language. In this exercise you have to be familiar with both the C language and the Nios II assembly
language. You should read the parts of the Monitor Program tutorial that discuss the use of C code. This
tutorial can be accessed from Intel’s FPGA University Program website, or by selecting Help > Tutorial
within the Monitor Program software. You also need to be familiar with a number of I/O ports in the
predesigned computer system for your DE-series board, including the parallel ports connected to the red
LEDs, 7-segment displays, and pushbutton switches, as well as the Interval Timer port. These I/O ports are
described in the documentation for your board’s computer.

Part 1

In Exercise 1, Part II, you were given a program in the Nios II assembly language that finds the largest
number in a list of 32-bit integers that is stored in the memory. This code is reproduced in Figure 1. For this
exercise you are to write a C-language program that implements this task.

Perform the following steps.

1. Write your C code in a file called parti.c. You should use the printf library function to display the
result produced by the program. To use the printf function you have to include the stdio.h library
header file in your C program by using the statement

#include <stdio.h>

To include a list of data words in the C program, you can declare them as an array using a statement
such as

int LIST[8]=1{7,4,5,3,6,1,8,2}; // number of elements, element 1, element 2, ...

2. Make a new Monitor Program project for this part of the exercise. In the Monitor Program screen
shown in Figure 2 select C Program in the Program Type dropdown menu, and on the screen that
follows select your partl.c file. In the screen of Figure 3 set the Terminal device to JTAG_UART.
This setting causes the output of the printf library function to appear in the Terminal window of the
Monitor Program graphical user interface.

Compile and download your program. Examine the disassembled code and compare it to the code
shown in Figure 1. To see the assembly code corresponding to your C source code, use the Goto
instruction dialog box in the Monitor Program’s Disassembly window. As illustrated in Figure 4,

type main in the dialog box and then click on the Go button to display your code. When you run
the program, the results produced by the printf function should appear in the 7erminal window as
indicated in the figure.

/* Program that finds the largest number in a list of integers */

text

.global _start
_start:

movia r8, RESULT # r8 points to result location

Idw 4, 4(r8) # r4 is a counter, initialize it with N

addi 5,18, 8 # 15 points to the first number

Idw r2, (r5) # 12 holds the largest number found so far
LOOP: subi 4,14, 1 # decrement the counter

beq r4, 10, DONE # finished if r4 is equal to 0

addi r5, 15,4 # increment the list pointer

Idw 16, (15) # get the next number

bge 2, r6, LOOP # check if larger number found

mov 2, 16 # update the largest number found

br LOOP
DONE: stw 12, (r8) # store the largest number into RESULT
STOP: br STOP # remain here when done
RESULT: .skip 4 # space for the largest number found
N: .word 7 # number of entries in the list
NUMBERS: .word 4,5,3,6 # numbers in the list . ..

word 1,8,2 #...

.end

Figure 1: Assembly-language program that finds the largest number.

= New Project Wizard “

Specify a program type

Figure 2: Setting the program type.

- New Project Wizard “
Specify system parameters

|

[« sck] [Mee>] [fimsh | [cance

Figure 3: Configuring the Terminal window.

4 Intel FPGA Monitor Program - partl : partl.srec [Running] - m} x
File Edit Actions Windows Help
O Gt E Phd 20008 23§

Disassembly — * | Registers - A
Gutnilstru:linn|Addras (hex) or symbol name: ‘main | MM
— | [pc 0x00000000 -
L~ [zero 0x00000000
#include <stdio. k- rl 0x00000000
r2 0x00000000
int LIST[3] = {7, 4, 5, 3, 6, 1, &, Z}: A/ mumber of elements, element r3 0x00000000
int main(void) rd 0x00000000
i r3 0x00000000
main: ré 0x00000000
000003670 addi sp, sp, -Oxd =7 000000000
e (M
0X00003674 stw ra, 0isp) = 0x00000000
- LISTIO1: rll 0x00000000
n= Lol ri2 0200000000
O0x 00003676 orhi riZ, zero, Oxl r13 0x00000000
Ox0000367C addi Yz, re, -0OxzZAC4 r14 0x00000000
O0x00003680 Lewr r6, 0(rZ) r15 0x00000000
largest = LIST[1]; =]l |r16 0x00000000
b rl? 0x00000000
18 0x00000000 .
Disassembly | Breakpoints ;| Memory | Watches | Trace im ntnnnnnnnn -
Terminal - X - X
JIAG URRT link established using cable "USB-Blaster [USB-0]", = |
device 1, instance 0x00 Connection established to GDB server at localhost:2932
Largest number is: & Symbols loaded.

Source code loaded.

Info & Errors | GDB Server

Figure 4: Displaying the code for the C program.

Part 11

Using the printf function results in a fairly large number of assembly-language instructions, because the
standard library routines are quite complex. Modify your program to display the result on the red lights
LEDR, instead of using the printf statement. The parallel port in the computer systems is connected to the
red lights is memory-mapped at the address 0XFF200000, as illustrated in Figure 5.

Compile, download, and run this program. Observe the difference in the size of the machine code for this
program as compared to the one from Part L.
Perform the following steps.

1. Write your C code in a file called parti.c. You should use the printf library function to display the
result produced by the program. To use the printf function you have to include the stdio.h library
header file in your C program by using the statement

#include <stdio.h>

To include a list of data words in the C program, you can declare them as an array using a statement
such as

int LIST[8]={7,4,5,3,6,1,8,2}; // number of elements, element 1, element 2, ...

Address

0xFF200000 31 Unused 10 ‘ 9 L. 0 | Data register

l i

LEDR, LEDR,

Figure 5: The parallel port connection to the red lights.

Part I11

In Exercise 2, you were given a program that uses shift and AND operations to find the longest string of
1’s in a word of data. The program is reproduced in Figure 6. In Parts III and IV of Exercise 2, you were
asked to extend this program so that it processed a list of data words, rather than just one word. Also,
the program was extended to compute the longest strings of 1’s, the longest string of 0’s, and the longest
string of alternating 1’s and 0’s for any of the words in the list. The results of these computations were
to be shown on the 7-segment displays of the computer. For this part of the exercise, you are to write a
C-language program to implement these tasks.

/* Program that counts consecutive ones */
text
.global _start

_start:

Idw 19, TEST_NUM(r0) /* Load the data into r9 */
mov r10, r0 /* r10 will hold the result */

LOOP: beq 19, 10, END /* Loop until r9 contains no more 1s */
srli rll1, 19, 0x01 /* Count the 1s by shifting the number and */
and 19,19, r11 /* ANDing it with the shifted result */
addi r10, r10, 0x01 /* Increment the counter */
br LOOP

END: br END /* Wait here */

TEST NUM: .word Ox3fabedef /* The number to be tested */

.end

Figure 6: Assembly-language program that counts consecutive ones.

To include the list of data words in your C program, you can declare them as an array using a statement
such as

int TEST_NUM]] = {0x0000e000, Ox3fabedef, 0x00000001, 0x00000002, 0x75a5a5a5,
0x01ffC000, 0x03£fC000, 0x55555555, 0x77777777, 0x08888888,
0x00000000};

Display the count for the longest string of 1’s on 7-segment displays HEX1 — 0, for the longest string of 0’s
on HEX3 — 2, and for alternating 1’s and 0’s on HEX5 — 4. The parallel ports connected to the 7-segment

displays in the computer systems are illustrated in Figure 7.

Address
OxFF200020 {3130 24 23220 16 1514 8 7 6 0 | Dataregister 2
I I I I 5 1
R B
4 2
HEX36_0 HEX26_0 HEX 1 6-0 HEXO6_0 T
Segments
OXFF200030 1 3130 24 2320 16 1514 8 7 6 0 | Dataregister

\ Unused \ i l \ l l

HEX5c, HEX4g,

Figure 7: The parallel ports connected to the 7-segment displays.

Create a new folder and Monitor Program project for your C program, and then compile, download, and
test the code. Using the ten words of test data shown above, the correct result that should appear on the
HEX5 — 0 displays is 32 31 12.

Part IV

In Exercise 4 you were asked to implement a real-time clock in the DE1-SoC Computer. The clock-time
was shown on the HEX3 — 0 seven-segment displays in the format SS:DD, with SS representing seconds
and DD representing hundredths of a second. Time was measured in intervals of 0.01 seconds by using
polled I/O with the Interval Timer, and the clock could be stopped/run by pressing one of the pushbutton
KEYs.

In this part of the exercise you are to write a C program that implements a real-time clock. Display the clock-
time on the 7-segment displays HEX5 — 0 in the format MM:SS:DD, where where MM are minutes, SS are
seconds, and DD are hundredths of a second. Measure time intervals of 0.01 seconds in your program
by using polled I/O with the Interval Timer. You should be able to stop/run the clock by pressing any
pushbutton KEY. When the clock reaches 59:59:99, it should wrap around to 00:00:00.

Make a new folder to hold your Monitor Program project for this part. Create a file called part4.c and
type your C code into this file. Make a new Monitor Program project for this part of the exercise, and then
compile, download, and test your program.

Part V

Write a C program that scrolls the word intEL in the right-to-left direction across the 7-segment displays. An
example of the scrolling behaviour is given in Table 1. You should scroll the display at a rate of 0.2 seconds
per character. You should be able to stop/run the scrolling message by pressing the KEY pushbuttons.

Time slot Display
0 i n t E L
1 n t E L
2 t E L
3 E L
4 L
5
6 [
7 I n

Table 1: Scrolling the message intEL on HEX5 — 0.

Note that scrolling a message across the 7-segment displays is similar in nature to the task of implementing
a real-time clock, from Part IV. You should be able to reuse most of your code from Part IV. But instead of
updating the clock each time the Interval Timer expires, you need to update the scrolling message.

Make a new folder to hold your Monitor Program project for this part. Create a file called part5.c and type
your C code into this file. Make a new Monitor Program project, compile, download, and test your program.

Copyright © 1991-2017 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

	Part I
	Part II
	Part III
	Part IV
	Part V

