
Laboratory Exercise 2
Using Logic Instructions with the ARM Processor

Logic instructions are needed in many embedded applications. Logic instructions are useful for manipula-
tion of bit strings and for dealing with data at the bit level where only a few bits may be of special interest.
They are essential in dealing with input/output tasks. In this exercise we will consider some typical uses.
We will use the ARM Cortex-A9 processor in the DE1-SoC Computer.

Part I

In this part you will implement an ARM assembly language program that counts the longest string of 1’s in
a word of data. For example, if the word of data is 0x103fe00f, then the required result is 9.

Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file called part1.s,
and type the assembly language code shown in Figure 1 into this file. This code uses an algorithm
involving shift and AND operations to find the required result—make sure that you understand how
this works.

2. Make a new Monitor Program project in the folder where you stored the part1.s file. Use the DE1-SoC
Computer for this project.

3. Compile and load the program. Fix any errors that you encounter (if you mistyped some of the code).
Once the program is loaded into memory in the DE1-SoC Computer, single step through the code to
see how the program works.

Part II

Perform the following.

1. Make a new folder and make a copy of the file part1.s in that new folder. Give the new file a name
such as part2.s.

2. In the new file part2.s, take the code which calculates the number of consecutive 1’s and make it into
a subroutine called ONES. Have the subroutine use register R1 to receive the input data and register
R0 for returning the result.

3. Add more words in memory starting from the label TEST NUM. You can add as many words as you
like, but include at least 10 words. To terminate the list include the word 0 at the end—check for this
0 entry in your main program to determine when all of the items in the list have been processed.

4. In your main program, call the newly-created subroutine in a loop for every word of data that you
placed in memory. Keep track of the longest string of 1’s in any of the words, and have this result in
register R5 when your program completes execution.

1



5. Make sure to use breakpoints or single-steping in the Monitor Program to observe what happens each
time the ONES subroutine is called.

/* Program that counts consecutive 1’s */
.text
.global start

start:
LDR R1, TEST NUM // load the data word into R1

MOV R0, #0 // R0 will hold the result
LOOP: CMP R1, #0 // loop until the data contains no more 1’s

BEQ END
LSR R2, R1, #1 // perform SHIFT, followed by AND
AND R1, R1, R2
ADD R0, #1 // count the string lengths so far
B LOOP

END: B END

TEST NUM: .word 0x103fe00f

.end

Figure 1: Assembly-language program that finds the largest string of 1’s.

Part III

One might be interested in the longest string of 0’s, or even the longest string of alternating 1’s and 0’s.
For example, the binary number 101101010001 has a string of 6 alternating 1’s and 0’s.

Write a new assembly language program that determines the following:

• Longest string of 1’s in a word of data—put the result into register R5

• Longest string of 0’s in a word of data—put the result into register R6

• Longest string of alternating 1’s and 0’s in a word of data—put the result into register R7 (Hint: What
happens when an n-bit number is XORed with an n-bit string of alternating 0’s and 1’s?)

Make each calculation in a separate subroutine called ONES, ZEROS, and ALTERNATE. Call each of these
subroutines in the loop that you wrote in Part III, and keep track of the largest result for each calculation,
from your list of data.

2



Part IV

In this part you are to extend your code from Part III so that the results produced are shown on the 7-
segment displays in the DE1-SoC Computer. Display the longest string of 1’s (R5) on HEX1 − 0, the
longest string of 0’s (R6) on HEX3− 2, and the longest string of alternating 1’s and 0’s (R7) on HEX5− 4.

Each result should be displayed as a two-digit decimal number. You may want to use the approach discussed
in Part IV of Exercise 1 to convert the numbers in registers R5, R6, and R7 from binary to decimal.

The parallel port in the DE1-SoC Computer connected to the 7-segment displays HEX3 − 0 is memory
mapped at the address 0xFF200020, and the port connected to HEX5 − 4 is at the address 0xFF200030.
Figure 2 shows how the display segments are connected to the parallel ports. To show each of the numbers
from 0 to 9 it is necessary to light up the appropriate display segments. For example, to show 0 on HEX0
you have to turn on all of the segments except for the middle one (segment 6). Hence, you would store the
bit-pattern (00111111)2 into the address 0xFF200020 to show this result. A subroutine that produces such
bit patterns in given in Figure 3.

0xFF200020 

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0xFF200030 

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

07 6815 142431 30 1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Unused

Figure 2: The parallel ports connected to the seven-segment displays HEX5− 0.

An example of code that shows the content of registers on the 7-segment displays illustrated in Figure 4.
Note that this code uses the DIVIDE subroutine that was discussed in Part IV of Exercise 1. The code in
the figure shows only the steps needed for register R5. Extend the code to display all three registers on the
7-segment displays as described above.

3



/* Subroutine to convert the digits from 0 to 9 to be shown on a HEX display.
* Parameters: R0 = the decimal value of the digit to be displayed
* Returns: R0 = bit patterm to be written to the HEX display
*/

SEG7 CODE: LDR R1, =BIT CODES
LDRB R0, [R1, R0]
BX LR

BIT CODES: .byte 0b00111111, 0b00000110, 0b01011011, 0b01001111, 0b01100110
.byte 0b01101101, 0b01111101, 0b00000111, 0b01111111, 0b01100111
.skip 2 // pad with 2 bytes to maintain word alignment

Figure 3: A subroutine that produces bit patterns for 7-segment displays.

· · ·
code for Part III (not shown)
· · ·
/* Display R5 on HEX1-0, R6 on HEX3-2 and R7 on HEX5-4 */
DISPLAY: LDR R8, =0xFF200020 // base address of HEX3-HEX0

MOV R0, R5 // display R5 on HEX1-0
BL DIVIDE // ones digit will be in R0; tens digit in R1
MOV R10, R1 // save the tens digit
BL SEG7 CODE
MOV R4, R0 // save bit code
MOV R0, R10 // retrieve the tens digit, get bit code
BL SEG7 CODE
ORR R4, R4, R0, LSL #8
· · ·
code for R6 (not shown)
STR R4, [R8] // display the numbers from R6 and R5

code for R7 (not shown)
· · ·

Figure 4: A code fragment for showing registers in decimal on 7-segment displays.

Copyright c©2015 Altera Corporation.

4


