Laboratory Exercise 1

Using a Nios II System

This is an introductory exercise using the Nios II processor. The exercise uses a pre-defined computer sys-
tem for your DE-series board, which includes the Nios II processor and various peripheral devices. The
system is implemented as a circuit that is downloaded into the FPGA device on an Intel DE-series board.
This exercise illustrates how programs written in the Nios II assembly language can be executed on the
DE-series boards. We will use the Monitor Program software to compile, load, and run the application
programs.

For this exercise you have to know the Nios II processor architecture and its assembly language. Read the
tutorial Nios II Introduction. You also have to become familiar with the Monitor Program; read the tutorial
Monitor Program Tutorial for Nios II. Both tutorials are available in Intel FPGA University Program web
site. The Monitor Program tutorial can also be accessed by selecting Help > Tutorial within the Monitor
Program software.

Part 1

In this part you will use the Monitor Program to set up a Nios II software development project. Perform the
following:

1. Make sure that your DE-series board is powered and on.

2. Open the Monitor Program software, which leads to the window in Figure 1.

4 Intel FFGA Monitor Pragram — a x
File Edit Actions Windows Help

O Re+eB = & it

Disassembly — % | Registers - %
Goto instruction | Address (hex) or symbol name: ’—| ﬂw

4

I

(4]
Disassembly | Breakpoints | Memory | Watches | Trace |

Terminal — X | Info & Errors X

Info & Errors | GDB Server /|

Figure 1: The Monitor Program window.

To develop Nios II software code using the Monitor Program it is necessary to create a new project.
Select File > New Project to reach the window in Figure 2. Give the project a name and indicate
the folder for the project; we have chosen the project name labl_partl in the folder Exercisel\Partl,

as indicated in the figure. Use the drop-down menu shown in Figure 2 to set the target architecture to
the Nios II processor. Click Next, to get the window in Figure 3.

- MNew Project Wizard

Specify a project name and directory

Project directory:

|D:\Exercise1\Part1 ‘ | Browse... |

Project name:

|1ab1_part1

Architecture: ”Nlo; Il

b

| < Back | ‘ Mext > ‘ | Einish | | Cancel |

Figure 2: Specify the folder and the name of the project.

W New Project Wizard

Specify a system
~Select a syst

|DE1-50C Computer - | Documentation

[This system, called the DE 1-50C Computer, is intended to be used as a platform for experiments in computer
organization and embedded systems. To support these experiments, the system contains a number of
components: 3 processor, memory, audio and video devices, and some simple I/0 peripherals.

- details

System description file (SOPCInfo):

|Erstty_Programenmputer_SystemstE1—SnC,1DE1—SoC_Computerfvenlogfcamputer_system.snpdnfo‘ | Browse. .. |

Quartus II programming (SOF) file (optional):

|InivErsAty_ngrameumputEr_SystEms,’DE1-SnC,1TlE1-SuC_CumputErfvEr\|ongE1_50C_Cnmputar.snF ‘ [Browse... |

The SOF file represents the FPGA programming file for the hardware system. Ifit is specified here, then the
Monitor Program can be used to download this programming file onto the board. Otherwise, the system wil need
to be downloaded using some other method (for example, by using Quartus II).

Quartus II JTAG debugging information (IDI) file:

Jni\rErsity_ngramJCnmputEr_SystEmstE1—SuC,|’DElﬂnC_CnmmtErfvErilongE1_SnC_CnmputEr.jdi‘ | Browse. ..

The IDI file is required for multiprocessor systems designed in Qsys, It stores the JTAG Device IDs, These IDs are
needed for communication between the Monitor Program and the system's multiple processors andfor JTTAG
UARTs .

| <Eack||mext>” Finish Hgan:el|

Figure 3: Specification of the system.

3. Now, you can select your own custom computer system (if you have one) or a pre-designed (by Intel)
system. Choose the computer for your DE-series board listed in Table 1. The display in the window
will now show where files that implement the pre-designed system are located. If you select a com-
puter system that you designed yourself, then you have to provide the locations of the corresponding
files. Click Next.

Board Computer System
DEO-CV DEO-CV Computer
DEI1-SoC | DEI-SoC Computer
DE2-115 | DE2-115 Computer

DEI10-Lite | DE10-Lite Computer

Table 1: DE-series board computer systems

4. Inthe window in Figure 4 you can specify the type of application programs that you wish to run. They
can be written in either assembly language or the C programming language. Specify that an assembly
language program will be used. The Monitor Program package contains several sample programs.
Select the box Include a sample program with the project. Then, choose the Getting Started
program, as indicated in the figure, and click Next.

& New Project Wizard
Specify a program type

Program Type: |Assembly Program v|

Lets you specify a program written in assembly language.

Include a sample program with the project

Select a sample program

Simple Program This program demonstrates use of parallel ports. =g
UTAG UART

Interrupt Example

Test Computer It performs the following:

1. displays the SW switch values on the red LEDs
2. displays a rotating pattern on the HEX displays
3. if KEY[2..1] is pressed, uses the SW switches as the pattern

| < Back| | Med> | [Einish | | Cancel |

Figure 4: Selection of an application program.

5. The window in Figure 5 is used to specify the source file(s) that contain the application program(s).
Since we have selected the Getting Started program, the window indicates the source code file for this
program. This window also allows the user to specify the starting point in the selected application
program. The default symbol is _start, which is used in the selected sample program. Click Next.

w* New Project Wizard
Specify program details

Source files

First source file is used to determine the name of the binary program file.

D:/Exercisel/Part1/getting_started.s Add...

Remove

Down

Program options
Start symbel: | _start ‘ ‘

Source files highlighted in blue are sample program files, which will be created in the project directory.

< Back|| | Next> || Einish | | Cancel

Figure 5: Source files used by the application program.

6. The window in Figure 6 indicates some system parameters. Note that the figure indicates that the
DE-SoC [USB-1] cable is selected to provide the connection between the DE1-SoC board and the
host computer. This is the name assigned to the USB-Blaster connection between the computer and
the DE1-SoC board. For the other boards, the connection may be called USB-Blaster [USB-0]. Click
Next.

> New Project Wizard

Specify system parameters

System p
Host connection: | DE-5oC [USE-1] ~| | Refresh |
Processor: |Nio;?_ '|
Terminal device: |JTAG_UART v|

| 3 Eack| Mext = | Finish | | Cancel |

Figure 6: Specify the system parameters.

7. The window in Figure 7 displays the names of Assembly sections that will be used for the program,
and allows the user to select a target memory location for each section. In this case only the .rext
section, which corresponds to the program code (and data), is defined. As shown in the figure, the
.text section is targeted to the SDRAM memory in the Computer, starting at address 0. Click Finish
to complete the specification of the new project.

8.

10.

11.

W New Project Wizard
Specify program memory settings

Memory opti

Here you can specify section names and their start and end addresses. These sections will be used by
the linker to place code and data at the specified addresses. To ensure correct use of the section names
by the linker, the names must match those identified by the assembler directives, such as text.

Linker Section Presets: ‘ Basic '|

Section Mame | Memory Device Address Range |
.Lext SOREM 0x00000000 - OxO3FFFFEF

< Back [| Mext > I Fini;hl Cancel

Figure 7: Specify the program memory settings.

Since you specified a new project, a pop-up box will appear asking if you want to download the
system associated with this project onto your DE-series board. Make sure that the power to the board
is turned on and click Yes. After the download is complete, a pop-up box will appear informing
you that the circuit has been successfully downloaded. Click OK. If the circuit is not successfully
downloaded, make sure that the USB connection, through which the USB-Blaster communicates, is
established and recognized by the host computer. (If there is a problem, a possible remedy may be to
unplug the USB cable and then plug it back in.)

Having downloaded the Computer into the FPGA on your DE-series board, we can now load and run
the sample program. In the main Monitor Program window, shown in Figure 8, select Actions >
Compile & Load to assemble the Nios II program and then load it into the FPGA chip. Figure 8
shows the Monitor Program window after the sample program has been loaded.

Run the program by selecting Actions > Continue or by clicking on the toolbar icon ¥, and observe
the patterns displayed on the LEDs and 7-segment displays.

Pause the execution of the sample program by clicking on the icon ', and disconnect from this
session by clicking on the icon &,

4 Intel FPGA Monitor Program - lab1_part1 : getting_started.srec [Paused] — m] *
File Edit Actions Windows Help

O 5+ & dhld 00l

Disassembly — *{ | Registers - X
Goto nsl:rul:linn‘ Address (hex) or symbol name: | Reg Value
— || lpc 0x00000000 -
|| lzero 0x00000000
. fext # executable code follows rl 0x00000000
-global _start r2 0x00000000
Start: r3 0x00000000
- r4 0x00000000
/% initialize base addreases of parallel ports */ rs 0x00000000
wovia rl5, SW_BASE # 50 slider switch base addd F: g"gggggggg
start: T !
0x00000000 03FFCEZ4 orhd rlS, zers, OxFFZ0 8 000000000
0x00000004 TECO1004 addi rls, rls, Oxd40 8 0x00000000
wovia rld, LEDE BASE # red LED base address Ei gigggggggg
O0x00000003 043FCE34 orhi rlg, zero, OxFF20 iz 1%00000000
Ox0000000C §4000004 addi rlg, rla, 0x0 r13 Nx00000000
movia r17, KEY_BELSE # pushbucton FEY hase addre | 14 0x00000000
0x00000010 047FCE34 i 0x00000000
0x00000000
0x00000000 -]

INFUT NOIM-TENOTY = EXDENgI0N_oFl UKLLZ00080
INFO: Non-memory - Expansion JE2 0xff200070
INFO: Non-memory - Interval Timer 0x££202000
INFO: Non-memory - Interval Timer 2 O0x££202020
INFO: Non-memory - Video_In Subsystem Video_In DMA 0xff203060Fg

1
[»] =

JIRG URRT link established using cable "DE-S5oC
[USB-1]", dewvice 1, instance 0x00

4
Info & Errors | GDB Server

Figure 8: The monitor window showing the loaded sample program.

Part I1

Now, we will explore some features of the Monitor Program by using a simple application program written
in the Nios II assembly language. Consider the program in Figure 9, which finds the largest number in a list

of 32-bit integers that is stored in the memory.

/* Program that finds the largest number in a list of integers */

.text

.global _start
_start:

movia r8, RESULT # 18 points to result location

Idw 4, 4(r8) # r4 is a counter, initialize it with N

addi 15,18, 8 # 15 points to the first number

Idw 2, (r5) # 12 holds the largest number found so far
LOOP: subi rd, r4, 1 # decrement the counter

beq r4, 10, DONE # finished if r4 is equal to 0

addi r5, 15,4 # increment the list pointer

Idw 16, (r5) # get the next number

bge r2, 16, LOOP # check if larger number found

mov 2, 16 # update the largest number found

br LOOP
DONE: stw 2, (r8) # store the largest number into RESULT
STOP: br STOP # remain here when done
RESULT: .skip 4 # space for the largest number found
N: .word 7 # number of entries in the list
NUMBERS: .word 4,5,3,6 # numbers in the list . ..

.word 1,8,2 #...

.end

Figure 9: Assembly-language program that finds the largest number.

Note that some sample data is included in this program. The word (4 bytes) at the label RESULT is reserved
for storing the result, which will be the largest number found. The next word, IV, specifies the number of
entries in the list. The words that follow give the actual numbers in the list.

Make sure that you understand the program in Figure 9 and the meaning of each instruction in it. Note the
extensive use of comments in the program. You should always include meaningful comments in programs
that you will write!

Perform the following:

1. Create a new folder for this part of the exercise, with a name such as Part2. Create a file named part2.s
and enter the code from Figure 9 into this file. Use the Monitor Program to create a new project in
this folder; we have chosen the project name part2. When you reach the window in Figure 4 choose
Assembly Program but do not select a sample program. Click Next.

2. Upon reaching the window in Figure 5, you have to specify the source code file for your program.
Click Add and in the pop-up box that appears indicate the desired file name, part2.s. Click Next to
get to the window in Figure 6. Again click Next to get to the window in Figure 7. Notice that the
SDRAM is selected as the memory device. Your program will be loaded starting at address O in this
memory. Click Finish.

3. Compile and load the program.

4. The Monitor Program will display a disassembled view of the machine code loaded in the memory, as
indicated in Figure 10. Note that the pseudo instruction movia r§, RESULT from your source code
has been implemented by using the two instructions orhi r8, zero, 0x0 and addi r8, r8, 0x38. These
instructions load the 32-bit address of the label RESULT, which is 0x00000038, into register 8.

% Intel FPGA Monitor Program - part2 : part2.srec [Paused] - O *
Eile Edit Actions Windows Help
£ weE *hd 2omlk F»

Disassembly — X | Registers - X
Gﬂtnnstmclinn‘ Address (hex) or symbol name:| | Reg Value
pC 0x00000000 =
||| lzero 0x00000000
/% Program that finds the largest muwher in a list of integen rl 0x00000000
r2 0x00000000
LLext # executable cod r3 0x00000000
.global ITart rd 0x00000000
start: B 5 0x00000000
movia rs, RESULT # r8 points to the ré 0x00000000
start: 7 0x00000000
0x00000000 02000034 orhi 18, zers, 0xD 8 0=00000000
0x00000004 42000804 addi T8, ra, 0%3i 3 0x00000000
ldw rd, 4(r3d) # rd i3 a counter, in tio 0=00000000
rll 0x00000000
0x00000003 41000117 Libr rd, 4(rsd)) iz 0x00000000
addi r&, 8, 8 # r5 points to the f r13 0x00000000
Ox0000000C 41400204 arddi r5, rd, Oxd [l [r14 0x00000000
ldu ri rs # r2 holds the 1a™l| g5 0x00000000
rlé 0x00000000
rl7 0x00000000 I~
Terminal — X | Info & Errors - X
INIU: NUM-IENULY — FUSIDULLUNS UXLLZUUUI0 =

JIAG UART link established using cable

INFO: Non-memory - Expansion_JPB5 0xff200080
"U3B-Blaster [USB-0]", dewice 1, instance 0x00

INFO: Non-memory - Interwval Timer O0xf£202000
INFO: Non-memory - Interval Timer 2 Oxff202020
INFO: Non-memory - Video_In Subsystem Video_In DMA 0xff20306(Fg

4]
Info & Errors | GDB Server

Figure 10: The disassembled view of the program in Figure 9.

5. Execute the program. When the code is running, you will not be able to see any changes (such as
the contents of registers or memory locations) in the Monitor Program windows, because the Monitor
Program cannot communicate with the computer while code is being executed. But, if you pause the
program then the Monitor Program windows will be updated. Pause the program using the icon !
and observe that the processor stops within the endless loop STOP: br STOP. Note that the largest
number found in the sample list is 8 as indicated by the content of register r2. This result is also
stored in memory at the label RESULT. As discussed above, the address of the label RESULT for
this program is 0x00000038. Use the Monitor Program’s Memory tab, as illustrated in Figure 11, to
verify that the resulting value 8 is stored in the correct location.

6. You can return control of the program to the start by clicking on the icon “, or by selecting Actions
> Restart. Do this and then single-step through the program by clicking on the icon “=*. Watch how
the instructions change the data in the processor’s registers.

7. Double-click on the pc register in the Monitor Program and then set the program counter to 0. Note
that this action has the same effect as clicking on the restart icon .

8. Now set a breakpoint at address 0X0000002C (by clicking on the gray bar to the left of this address),
so that the program will automatically stop executing whenever the branch instruction at this location
is about to be executed. Restart the program and run it again. Observe the contents of register r2 each
time the breakpoint is reached.

4 Intel FPGA Monitor Program - part2 : part2.srec [Paused] — m} x

File Edit Actions Windows Help

O 5+ & AL 20emlk e

Memory — *{ | Registers - X
: - Re: Value
Goto address (hex or symbol name): ‘ [] Query Devices ;#_DXDDDDDDM 3
|| lzero 0x00000000
0x00000000 02000034 42000E04 41000117 41400204 rl 0x00000000
0x00000010 28300017 Z13FFFC4 20000526 29400104 r2 0x00000008
0x00000020 29300017 L1BFFBOE 30053834 OO3FFI0s r3 0x00000000
0x00000030 40800015 003FFFO6 00000003 00000007 r4 0x00000000
0x00000040 00000004 00000005 00000003 00000008 s 0x00000058
0x00000050 00000001 00000008 00000002 BDEOB430 ré 0x00000002

r7 0x00000000

0x00000060 ELCOFIDZ 3CD13073 E3FZCOD3 TETLFOEO

0x00000070 B3D2D280 SDTABSFS EOFOFZDO 30FB6CFL 8 000000038
0xooooooson CEZFZFOD0 FO78F070 D3COF1D0 18EC3C70 3 0x00000000
Ox00000090 EZDOCIFL F838BCEOD EL1D24ZF0 T87030E0D iig ;ig;gg;ggg
Ox 00000040 E1DOD0S3 2878B8F0 FODOFOD3 2C26Fa70 riz n%00000000
Ox000000E0 CZD1F3D0 3BE03870 D5F1C350 3C3C38E0 13 0%00000000
Ox000000co CADIEOFO 34T74F4F4 EZCZFzCO F3787C74 L r1a 0x00000000
0x000000D0 42ZD0E3C4 3CTABAFS E3E3E3C0 EOLSACE =l lr15 0x00000000
d | e 0x00000000
Di;as;ambly')'r Brezkpoints Memnry;’ Watches}r Trace rl7 0x00000000 -]
Terminal — | Info & Errors - X
- - - INFUT NUI-MENDTY = EXDElSI0N_UFS UKLLZUUUGD .
JIRG UART 1link established using cable INFO: Non-memory - Interval Timer Oxf 000 |
"USB-Blaster [USB-0]", device 1, instance 0x00 INFO: Non-memory - Interval Timer 2 0x££202020
INFO: Non-memory - Video_In Subsystem Video_In DMA 0xff20306

n T
Info & Errors | GDB Server

Figure 11: Displaying the result in the memory tab.

10

Part I11

Implement the task in Part II by modifying the program in Figure 9 so that it uses a subroutine. The sub-
routine, LARGE, has to find the largest number in a list. The main program passes the number of entries
and the address of the start of the list as parameters to the subroutine via registers r4 and r5. The subroutine
returns the value of the largest number to the calling program via register r2. A suitable main program is
given in Figure 12.

Create a new folder and a new Monitor Program project to compile and download your program. Run your
program to verify its correctness.

/* Program that finds the largest number in a list of integers */
.text
.global _start

_start:

movia r8, RESULT # 18 points to the result location

Idw 4, 4(r8) # r4 holds number of elements in the list

addi 5,18, 8 # 15 points to the start of the list

call LARGE

stw 12, (r8) # r2 holds the subroutine return value
STOP: br STOP
LARGE:
RESULT: skip 4 # space for the largest number found
N: .word 7 # number of entries in the list
NUMBERS: .word 4,5,3,6 # the data . ..

.word 1,8,2

.end

Figure 12: Main program for Part III.

Part IV

The program shown in Figure 13 converts a binary number to two decimal digits. The binary number is
loaded from memory at the location N, and the two decimal digits that are extracted from [V are stored into
memory in two bytes starting at the location Digits. For the value N = 76 (0x4c) shown in the figure,
the code sets Digits to 00000706.

Make sure that you understand how the code in Figure 13 works. Then, extend the code so that
it converts the binary number to four decimal digits, supporting decimal values up to 9999. You
should modify the DIVIDE subroutine so that it can use any divisor, rather than only a divisor of
10. Pass the divisor to the subroutine in register r5.

11

If you run your code with the value N = 9876 (0x2694), then Digits should be set to 09080706.

/* Program that converts a binary number to decimal */
.text
.global _start

_start:
movia 4, N
addi 8,14, 4 # 18 points to the decimal digits storage location
Idw r4, (r4) #r4 holds N
call DIVIDE # parameter for DIVIDE is in r4
/* Tens digit is now in r3, ones digit is in 12 */
stb r3, 1(r8)
stb 12, (r8)
END: br END

/* Subroutine to perform the integer division r4 / 10.
* Returns: quotient in r3, and remainder in 12

*/
DIVIDE: mov 12, r4 # r2 will be the remainder
movi r5, 10 # divisor
movi r3,0 # 13 will be the quotient
CONT: blt r2, r5, DIV_END
sub 2,12, 15 # subtract the divisor, and ...
addi 3,13, 1 # increment the quotient
br CONT
DIV_END: ret # quotient is in r3, remainder in 12
N: .word 76 // the decimal number to be converted
Digits: .space 4 /I storage space for the decimal digits
.end

Figure 13: A program that converts a binary number to two decimal digits.

12

Copyright © 1991-2017 Intel Corporation. All rights reserved. Intel, The Programmable Solutions
Company, the stylized Intel logo, specific device designations, and all other words and logos that
are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Intel Corporation in the U.S. and other countries. All other product or service
names are the property of their respective holders. Intel products are protected under numer-
ous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Intel
warrants performance of its semiconductor products to current specifications in accordance with
Intel's standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel Corporation. Intel customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products
or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore
all warranties, representations or guarantees of any kind (whether express, implied or statutory)
including, without limitation, warranties of merchantability, non-infringement, or fithess for a par-
ticular purpose, are specifically disclaimed.

13

	Part I
	Part II
	Part III
	Part IV

