
Laboratory Exercise 4
Input/Output in an Embedded System

The purpose of this exercise is to investigate the use of devices that provide input and output capabilities
for a processor. There are two basic techniques for dealing with I/O devices: program-controlled polling
and interrupt-driven approaches. You will use the polling approach in this exercise, writing programs in the
Nios II assembly language. Your programs will be executed on a Nios II processor in one of the DE-series
computer systems. Parallel port interfaces, as well as a timer module, will be used as examples of I/O
hardware.

A parallel port provides for data transfer in either the input or output direction. The transfer of data is done
in parallel and it may involve from 1 to 32 bits. The number of bits, n, and the type of transfer depend on
the specifications of the specific parallel port being used. The parallel port interface can contain the four
registers shown in Figure 1.

0(n-1)

Input/Output data

(a) Data register

(b) Direction register

Direction control for each input/output line

Interrupt enable/disable control for each input line

(c) Interrupt-mask register

(d) Edge-capture register

Edge detection for each input line

Address offset
(in bytes)

0

4

8

12

Figure 1: Registers in the parallel port interface.

Each register is n bits long. The registers have the following purpose:

• Data register: holds the n bits of data that are transferred between the parallel port and the Nios II
processor. It can be implemented as an input, output, or a bidirectional register.

1



• Direction register defines the direction of transfer for each of the n data bits when a bidirectional
interface is generated.

• Interrupt-mask register: used to enable interrupts from the input lines connected to the parallel port.

• Edge-capture register: indicates when a change of logic value is detected in the signals on the input
lines connected to the parallel port. Once a bit in the edge capture register becomes asserted, it will
remain asserted. An edge-capture bit can be de-asserted by writing to it using the Nios II processor.

Not all of these registers are present in some parallel ports. For example, the Direction register is included
only when a bidirectional interface is specified. The Interrupt-mask and Edge-capture registers must be
included if interrupt-driven input/output is used.

The parallel port registers are memory mapped, starting at a specific base address. The base address has to
be a multiple of four if the parallel port is to be accessed using word accesses from the Nios II processor. The
base address becomes the address of the Data register in the parallel port. The addresses of the other three
registers have offsets of 4, 8, or 12 bytes (1, 2, or 3 words) from this base address. The pre-built computer
system all have parallel ports connected to slider switches, pushbutton KEYs, LEDs, and seven-segment
displays (when those peripherals exist).

Part I

Write a Nios II assembly-language program that displays a decimal digit on the seven-segment display
HEX0. The other seven-segment displays on your DE-series board should be blank.

The parallel port connected to the seven-segment displays HEX3 − 0 is memory mapped at the address
0xFF200020, and the port connected to HEX5− 4 is at the address 0xFF200030. Figure 2 shows how the
display segments are connected to the parallel ports.

0xFF200020 

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0xFF200030 

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

07 6815 142431 30 1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Unused

Figure 2: The parallel ports connected to the seven-segment displays, HEX5− 0, in the DE-series copmuter
systems.

Initially the number displayed on HEX0 should be 0. If KEY1 is pressed then SW0 should be checked. If
SW0 is high increment the displayed number, and if it is low then decrement the number. Pressing KEY0

2



should blank the display, and pressing any other KEY after that should return the display to 0. The parallel
port connected to the pushbutton KEYs is illustrated in Figure 3. The parallel port connected to the slider
switches SWs is illustrated in Figure 4. In your program, use polled I/O to read the Data register to see when
a button is being pressed. When you are not pressing any KEY the Data register provides 0, and when you
press KEYi the Data register provides the value 1 in bit position i. Once a button-press is detected, be sure
that your program waits until the button is released. You should not use the Interruptmask or Edgecapture
registers for this part of the exercise.

Address 02 14 331 30 . . .

0xFF200050 

0xFF200058 

0xFF20005C 

Unused

KEY3-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 3: The parallel port connected to the pushbutton KEYs.

0xFF200040 

SW0SW9

Address

Data register031 910 . . .Unused

Figure 4: The parallel port connected to the slider switches SWs.

3



Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file called part1.s and
type your assembly language code into this file. You may want to refer to a discussion, and examples
of assembly-language code, in Part IV of Lab Exercise 2 about displaying numbers on seven-segment
displays.

2. Make a new Monitor Program project in the folder where you stored the part1.s file. Select Nios II as
the target processor architecture and use the appropriate pre-built computer system for your DE-series
board.

3. Compile, download, and test your program.

Part II

Write a Nios II assembly-language program that displays a two-digit decimal counter on the seven-segment
displays HEX1 − 0. The counter should be incremented approximately every 0.25 seconds. When the
counter reaches the value 99, it should start again at 0. The counter should stop/start when any pushbutton
KEY is pressed.

To achieve a delay of approximately 0.25 seconds, use a delay-loop in your assembly language code. A
suitable example of such a loop is shown below.

DO_DELAY: movia r7, 8000000 # delay counter
SUB_LOOP: subi r7, r7, 1

bne r7, zero, SUB_LOOP

To avoid “missing” any button presses while the processor is executing the delay loop, you should use the
Edgecapture register in the KEY port, shown in Figure 3. When a pushbutton is pressed, the corresponding
bit in the Edgecapture register is set to 1, and it remains set until reset to 0 by writing into the register.
Perform the following:

1. Create a new folder to hold your Monitor Program project for this part. Create a file called part2.s
and type your assembly language code into this file.

2. Make a new Monitor Program project in the folder where you stored the part2.s file. Select Nios II as
the target processor architecture and use the appropriate pre-built computer system for your DE-series
board.

3. Compile, download, and test your program.

Part III

In Part II you used a delay loop to cause the Nios II processor to wait for approximately 0.25 seconds.
The processor loaded a large value into a register before the loop, and then decremented that value until it
reached 0. In this part you are to modify your code so that a hardware timer is used to measure an exact
delay of 0.25 seconds. You should use polled I/O to cause the Nios II processor to wait for the timer.

The pre-built computer systems include an Interval Timer implemented in the FPGA that can be used by

4



the Nios II processor. This timer can be loaded with a preset value, and then counts down to zero using
the 100-MHz clock signal provided as the system clock in the DE-series computer systems (or 50-Mhz for
the DE2-115 Computer System). The programming interface for the timer includes six 16-bit registers, as
illustrated in Figure 5.

Address 01531 . . .

0xFF202000 

0xFF202004 

. . .

Unused RUN TO

1

START CONT ITOSTOP

16 217

Unused

Counter start value (low) 0xFF202008 

Counter start value (high)0xFF20200C 

Counter snapshot (low)0xFF202010 

Counter snapshot (high)0xFF202014 

3

Not present
(interval timer has
16-bit registers)

Status register

Control register

Figure 5: The Interval Timer registers.

The TO bit in the Status register provides a timeout signal which is set to 1 by the timer when it has reached
a count value of zero. You should poll this bit in your program to cause the Nios II processor to wait for the
timer. The TO bit can be reset by writing a 0 into it.

The CONT bit affects the continuous operation of the timer. When the timer reaches a count value of zero
it automatically reloads the specified starting count value. If CONT is set to 1, then the timer will continue
counting down automatically. But if CONT = 0, then the timer will stop after it has reached a count value
of 0. The (START/STOP) bits can be used to commence/suspend the operation of the timer by writing a 1
into the respective bit.

The two 16-bit registers for the Counter start value allow the period of the timer to be changed. The default
setting provided gives a timer period of 125 msec. To achieve this period, the starting value of the count is
100 MHz × 125 msec = 12.5× 106.

Make a new folder to hold your Monitor Program project for this part. Create a file called part3.s and
type your assembly language code into this file. Make a new Monitor Program project for this part of the
exercise, and then compile, download, and test your program.

Part IV

In this part you are to write an assembly language program that implements a real-time clock. Display the
time on the seven-segment displays HEX3 − 0 in the format SS:DD, where SS are seconds and DD are
hundredths of a second. Measure time intervals of 0.01 seconds in your program by using polled I/O with
the Interval Timer. You should be able to stop/run the clock by pressing any pushbutton KEY. When the
clock reaches 59:99, it should wrap around to 00:00.

Make a new folder to hold your Monitor Program project for this part. Create a file called part4.s and type

5



your code into this file. Make a new Monitor Program project for this part of the exercise, and then compile,
download, and test your program.

6



Copyright c© 1991-2017 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Com-
pany, the stylized Intel logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Intel products are protected under numerous U.S. and foreign patents and pending ap-
plications, mask work rights, and copyrights. Intel warrants performance of its semiconductor products to
current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to
any products and services at any time without notice. Intel assumes no responsibility or liability arising out
of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Intel Corporation. Intel customers are advised to obtain the latest version of device specifi-
cations before relying on any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including, without limi-
tation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

7


	Part I
	Part II
	Part III
	Part IV

