1 Introduction

This document describes a computer system that can be implemented on the Intel® DE10-Lite development and education board. This system, called the DE10-Lite Computer, is intended for use in experiments on computer organization and embedded systems.

To support such experiments, the system contains embedded processors, memory, audio and video devices, and some simple I/O peripherals. The FPGA programming file that implements this system, as well as its design source files, can be obtained from the University Program section of Intel’s web site.

2 DE10-Lite Computer Contents

A block diagram of the DE10-Lite Computer system is shown in Figure 1. As indicated in the figure, the components in this system are implemented utilizing the FPGA inside Intel’s Max®10 chip. The FPGA implements two Nios® II processors and several peripheral ports including: An Arduino® header, memory, timer modules, VGA, GPIO, and parallel ports connected to switches, push-buttons and lights.

2.1 Nios® II Processor

The Intel Nios II processor is a 32-bit CPU that can be implemented in an Intel FPGA device. Two versions of the Nios II processor are available, designated economy (/e) and fast (/f). The DE10-Lite Computer includes two instances of the Nios II/f version, configured with floating-point hardware support.

An overview of the Nios II processor can be found in the document Introduction to the Intel Nios II Processor, which is provided in the University Program’s web site. An easy way to begin working with the DE10-Lite Computer and the Nios II processor is to make use of a utility called the Intel FPGA Monitor Program. It provides an easy way to assemble/compile Nios II programs written in either assembly language or the C language. The Monitor Program, which can be downloaded from Intel’s web site, is an application program that runs on the host computer connected to the DE10-Lite board. The Monitor Program can be used to control the execution of code on Nios II, list (and edit) the contents of processor registers, display/edit the contents of memory on the DE10-Lite board, and similar operations. The Monitor Program includes the DE10-Lite Computer as a predesigned system that can be downloaded onto the DE10-Lite board, as well as several sample programs in assembly language and C that show how to use the DE10-Lite Computer’s peripherals. Some images that show how the DE10-Lite Computer is integrated with the Monitor Program are described in Section 8. An overview of the Monitor Program is available in the document Intel FPGA Monitor Program Tutorial, which is provided in the University Program web site.
All of the I/O peripherals in the DE10-Lite Computer are accessible by the processor as memory mapped devices, using the address ranges that are given in the following subsections.

2.2 Memory Components

The DE10-Lite Computer has an SDRAM port, as well as two memory modules implemented using the on-chip memory inside the FPGA. These memories are described below.

2.2.1 SDRAM

An SDRAM Controller in the FPGA provides an interface to the 64 MB synchronous dynamic RAM (SDRAM) on the DE10-Lite board, which is organized as $32M \times 16$ bits. It is accessible by the Nios II processor using word (32-bit), halfword (16-bit), or byte operations, and is mapped to the address space $0x00000000$ to $0x03FFFFFF$.

Figure 1. Block diagram of the DE10-Lite Computer.
2.2.2 On-Chip Memory

The DE10-Lite Computer includes a 64-Kbyte memory that is implemented inside the FPGA. This memory is organized as 2K x 32 bits, and spans addresses in the range 0x08000000 to 0x0800FFFF. The memory is used as a pixel buffer for the video-out and video-in ports.

2.2.3 On-Chip Memory Character Buffer

The DE10-Lite Computer includes an 8 KB memory implemented inside the FPGA that is used as a character buffer for the video-out port, which is described in Section 4.1. The character buffer memory is organized as 8K x 8 bits, and spans the address range 0x09000000 to 0x09001FFF.

2.3 Parallel Ports

There are several parallel ports implemented in the FPGA that support input, output, and bidirectional transfers of data between the Nios II processor and I/O peripherals. As illustrated in Figure 2, each parallel port is assigned a Base address and contains up to four 32-bit registers. Ports that have output capability include a writable Data register, and ports with input capability have a readable Data register. Bidirectional parallel ports also include a Direction register that has the same bit-width as the Data register. Each bit in the Data register can be configured as an input by setting the corresponding bit in the Direction register to 0, or as an output by setting this bit position to 1. The Direction register is assigned the address Base + 4.

Some of the parallel ports in the DE10-Lite Computer have registers at addresses Base + 8 and Base + C, as indicated in Figure 2. These registers are discussed in Section 3.

2.3.1 Red LED Parallel Port

The red lights LEDR9...0 on the DE10-Lite board are driven by an output parallel port, as illustrated in Figure 3. The port contains a 10-bit Data register, which has the address 0xFF200000. This register can be written or read by the processor using word accesses, and the upper bits not used in the registers are ignored.
2.3.2 7-Segment Displays Parallel Port

There are two parallel ports connected to the 7-segment displays on the DE10-Lite board, each of which comprises a 32-bit write-only Data register. As indicated in Figure 4, the register at address 0xFF200020 drives digits HEX3 to HEX0, and the register at address 0xFF200030 drives digits HEX5 and HEX4. Data can be written into these two registers, and read back, by using word operations. This data directly controls the segments of each display, according to the bit locations given in Figure 4. The locations of segments 6 to 0 in each seven-segment display on the DE10-Lite board is illustrated on the right side of the figure.

Figure 3. Output parallel port for LEDR.

Figure 4. Bit locations for the 7-segment displays parallel ports.

2.3.3 Slider Switch Parallel Port

The SW9−0 slider switches on the DE10-Lite board are connected to an input parallel port. As illustrated in Figure 5, this port comprises a 10-bit read-only Data register, which is mapped to address 0xFF200040.

2.3.4 Pushbutton Key Parallel Port

The parallel port connected to the KEY1−0 pushbutton switches on the DE10-Lite board comprises three 2-bit registers, as shown in Figure 6. These registers have the base address 0xFF200050 and can be accessed using word operations. The read-only Data register provides the values of the switches KEY1−0. The other two registers shown
2.3.5 Expansion Parallel Port

The DE10-Lite Computer includes one bidirectional parallel port that is connected to the JP1 expansion header on the DE10-Lite board. This parallel port includes the four 32-bit registers that were described previously for Figure 2. The base address of this port is 0xFF200060. Figure 7 gives a diagram of the JP1 expansion connector on the DE10-Lite board, and shows how the respective parallel port Data register bits, \(D_{31-0} \), are assigned to the pins on the connector. The figure shows that bit \(D_0 \) of the parallel port is assigned to the pin at the top right corner of the connector, bit \(D_1 \) is assigned below this, and so on. Note that some of the pins on JP1 are not usable as input/output connections, and are therefore not used by the parallel ports. Also, only 32 of the 36 data pins that appear on each connector can be used.

2.3.6 Arduino* Expansion Parallel Port

The DE10-Lite Computer includes a bidirectional parallel port that is connected to the Arduino* Uno R3 expansion header on the DE10-Lite board. This parallel port includes the four 32-bit registers that were described previously for Figure 2. The base address of the port is 0xFF200100. The Data register bits in this port are connected to the Arduino expansion header User I/O. Thus, bit 0 in the Data register connects to the signal Arduino_IO0, bit 1 to Arduino_IO1, and so on.
Figure 7. Assignment of parallel port bits to pins.

The DE10-Lite Computer also includes a one-bit output port that is connected to the Arduino Uno R3 expansion header on the DE10-Lite board. This one-bit port has a data register that is connected to the Arduino_Reset_N signal on the DE10-Lite board. The address of this port is \(0xFF200110\).

More details about the Arduino Uno R3 expansion header can be found in the DE10-Lite Board User Manual.

2.3.7 Using the Parallel Ports with Assembly Language Code and C Code

The DE10-Lite Computer provides a convenient platform for experimenting with Nios II assembly language code, or C code. A simple example of such code is provided in the Appendix in Listings 1 and 2. Both programs perform the same operations, and illustrate the use of parallel ports by using either assembly language or C code.

The code in the figures displays the values of the SW switches on the LED lights. A rotating pattern is displayed on the LEDs. This pattern is rotated to the left by using a Nios II `rotate` instruction, and a delay loop is used to make the shifting slow enough to observe. The pattern can be changed to the values of the SW switches by pressing a pushbutton KEY. When a pushbutton key is pressed, the program waits in a loop until the key is released.

The source code files shown in Listings 1 and 2 are distributed as part of the Intel FPGA Monitor Program. The files can be found under the heading *sample programs*, and are identified by the name *Getting Started.*
2.4 JTAG* Port

The JTAG* port implements a communication link between the DE10-Lite board and its host computer. This link can be used by the Intel Quartus® Prime software to transfer FPGA programming files into the DE10-Lite board, and by the Intel FPGA Monitor Program, discussed in Section 8. The JTAG port also includes a UART, which can be used to transfer character data between the host computer and programs that are executing on the Nios II processor. If the Intel FPGA Monitor Program is used on the host computer, then this character data is sent and received through its Terminal Window. The programming interface of the JTAG UART consists of two 32-bit registers, as shown in Figure 8. The register mapped to address 0xFF201000 is called the Data register and the register mapped to address 0xFF201004 is called the Control register.

<table>
<thead>
<tr>
<th>Address</th>
<th>31 ... 16</th>
<th>15</th>
<th>14 ... 11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7 ... 1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF201000</td>
<td>RAVAIL</td>
<td>RVALID</td>
<td>Unused</td>
<td>DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFF201004</td>
<td>WSPACE</td>
<td>Unused</td>
<td>AC</td>
<td>WI</td>
<td>RI</td>
<td>WE</td>
<td>RE</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8. JTAG UART registers.

When character data from the host computer is received by the JTAG UART it is stored in a 64-character FIFO. The number of characters currently stored in this FIFO is indicated in the field RAVAIL, which are bits 31−16 of the Data register. If the receive FIFO overflows, then additional data is lost. When data is present in the receive FIFO, then the value of RAVAIL will be greater than 0 and the value of bit 15, RVALID, will be 1. Reading the character at the head of the FIFO, which is provided in bits 7−0, decrements the value of RAVAIL by one and returns this decremented value as part of the read operation. If no data is present in the receive FIFO, then RVALID will be set to 0 and the data in bits 7−0 is undefined.

The JTAG UART also includes a 64-character FIFO that stores data waiting to be transmitted to the host computer. Character data is loaded into this FIFO by performing a write to bits 7−0 of the Data register in Figure 8. Note that writing into this register has no effect on received data. The amount of space, WSPACE, currently available in the transmit FIFO is provided in bits 31−16 of the Control register. If the transmit FIFO is full, then any characters written to the Data register will be lost.

Bit 10 in the Control register, called AC, has the value 1 if the JTAG UART has been accessed by the host computer. This bit can be used to check if a working connection to the host computer has been established. The AC bit can be cleared to 0 by writing a 1 into it.

The Control register bits RE, WE, RI, and WI are described in Section 3.

2.4.1 Using the JTAG* UART with Assembly Language Code and C Code

Listings 3 and 4 give simple examples of assembly language and C code, respectively, that use the JTAG UART. Both versions of the code perform the same function, which is to first send an ASCII string to the JTAG UART, and then enter an endless loop. In the loop, the code reads character data that has been received by the JTAG UART, and echoes this data back to the UART for transmission. If the program is executed by using the Intel FPGA Monitor

Intel Corporation - FPGA University Program
June 2018
Program, then any keyboard character that is typed into the *Terminal Window* of the Monitor Program will be echoed back, causing the character to appear in the *Terminal Window*.

The source code files shown in Listings 3 and 4 are made available as part of the Intel FPGA Monitor Program. The files can be found under the heading *sample programs*, and are identified by the name *JTAG UART*.

2.5 Interval Timers

The DE10-Lite Computer includes a timer module implemented in the FPGA that can be used by the Nios II processor. This timer can be loaded with a preset value, and then counts down to zero using a 100-MHz clock. The programming interface for the timer includes six 16-bit registers, as illustrated in Figure 9. The 16-bit register at address 0xFF202000 provides status information about the timer, and the register at address 0xFF202004 allows control settings to be made. The bit fields in these registers are described below:

- **TO** provides a timeout signal which is set to 1 by the timer when it has reached a count value of zero. The TO bit can be reset by writing a 0 into it.
- **RUN** is set to 1 by the timer whenever it is currently counting. Write operations to the status halfword do not affect the value of the RUN bit.
- **ITO** is used for generating interrupts, which are discussed in section 3.

<table>
<thead>
<tr>
<th>Address</th>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF202000</td>
<td></td>
</tr>
<tr>
<td>0xFF202004</td>
<td></td>
</tr>
<tr>
<td>0xFF202008</td>
<td></td>
</tr>
<tr>
<td>0xFF20200C</td>
<td></td>
</tr>
<tr>
<td>0xFF202010</td>
<td></td>
</tr>
<tr>
<td>0xFF202014</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9. Interval timer registers.

- **CONT** affects the continuous operation of the timer. When the timer reaches a count value of zero it automatically reloads the specified starting count value. If CONT is set to 1, then the timer will continue counting down automatically. But if CONT = 0, then the timer will stop after it has reached a count value of 0.

- **(START/STOP)** is used to commence/suspend the operation of the timer by writing a 1 into the respective bit.

The two 16-bit registers at addresses 0xFF202008 and 0xFF20200C allow the period of the timer to be changed by setting the starting count value. The default setting provided in the DE10-Lite Computer gives a timer period...
of 125 msec. To achieve this period, the starting value of the count is $100 \text{ MHz} \times 125 \text{ msec} = 12.5 \times 10^6$. It is possible to capture a snapshot of the counter value at any time by performing a write to address 0xFF202010. This write operation causes the current 32-bit counter value to be stored into the two 16-bit timer registers at addresses 0xFF202010 and 0xFF202014. These registers can then be read to obtain the count value.

A second interval timer, which has an identical interface to the one described above, is also available in the FPGA, starting at the base address 0xFF202020.

Each Nios II processor has exclusive access to two interval timers.

2.6 Accelerometer

The DE10-Lite Computer includes an ADXL345 3-axis digital accelerometer, which can be used to measure acceleration on the board in three directions. The Accelerometer chip is controlled by the Accelerometer SPI Mode core, which provides a memory-mapped interface at address 0xFF204020 to 0xFF204021, as shown in in Figure 10.

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10004020</td>
<td>Low-order byte of x-axis acceleration.</td>
</tr>
<tr>
<td>0x10004021</td>
<td>High-order byte of x-axis acceleration.</td>
</tr>
<tr>
<td>0x10004022</td>
<td>Low-order byte of y-axis acceleration.</td>
</tr>
<tr>
<td>0x10004023</td>
<td>High-order byte of y-axis acceleration.</td>
</tr>
<tr>
<td>0x10004024</td>
<td>Low-order byte of z-axis acceleration.</td>
</tr>
<tr>
<td>0x10004025</td>
<td>High-order byte of z-axis acceleration.</td>
</tr>
</tbody>
</table>

Figure 10. Accelerometer registers.

The ADXL345 chip contains a series of 58 internal registers, 0x00 to 0x39, which are used to control the device and store data. To access these registers, the address of the desired register should be written to the Address register of the Accelerometer SPI Mode core. Performing a read or write on the Data register will then read from or write to the requested address on the ADXL345. Commonly used registers of the accelerometer and their address are listed in Table 1. For a full list of registers, consult the ADXL345 datasheet.

<table>
<thead>
<tr>
<th>Address</th>
<th>Register Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x032</td>
<td>DATAX0</td>
<td>Low-order byte of x-axis acceleration.</td>
</tr>
<tr>
<td>0x033</td>
<td>DATAY0</td>
<td>High-order byte of x-axis acceleration.</td>
</tr>
<tr>
<td>0x034</td>
<td>DATAY1</td>
<td>Low-order byte of y-axis acceleration.</td>
</tr>
<tr>
<td>0x035</td>
<td>DATAZ0</td>
<td>High-order byte of y-axis acceleration.</td>
</tr>
<tr>
<td>0x036</td>
<td>DATAZ1</td>
<td>Low-order byte of z-axis acceleration.</td>
</tr>
<tr>
<td>0x037</td>
<td>DATAZ2</td>
<td>High-order byte of z-axis acceleration.</td>
</tr>
</tbody>
</table>

Table 1. Commonly used registers in the ADXL345 chip.

2.7 Floating-point Hardware

The Nios II processor in the DE10-Lite Computer includes hardware support for floating-point addition, subtraction, multiplication, and division. To use this support in a C program, variables must be declared with the type `float`. A...
simple example of such code is given in Listing 15. When this code is compiled, it is necessary to pass the special argument -mcustom-fpu-cfg=60-2 to the C compiler, to instruct it to use the floating-point hardware support.

2.8 System ID

The system ID module provides a unique value that identifies the DE10-Lite Computer system. The host computer connected to the DE10-Lite board can query the system ID module by performing a read operation through the JTAG port. The host computer can then check the value of the returned identifier to confirm that the DE10-Lite Computer has been properly downloaded onto the DE10-Lite board. This process allows debugging tools on the host computer, such as the Intel FPGA Monitor Program, to verify that the DE10-Lite board contains the required computer system before attempting to execute code that has been compiled for this system.

3 Exceptions and Interrupts

The reset address of the Nios II processor in the DE10-Lite Computer is set to 0x00000000. The address used for all other general exceptions, such as divide by zero, and hardware IRQ interrupts is 0x00000020. Since the Nios II processor uses the same address for general exceptions and hardware IRQ interrupts, the Exception Handler software must determine the source of the exception by examining the appropriate processor status register. Table 2 gives the assignment of IRQ numbers to each of the I/O peripherals in the DE10-Lite Computer. The rest of this section describes the interrupt behavior associated with the interval timer, parallel ports, and serial ports in the DE10-Lite Computer.

<table>
<thead>
<tr>
<th>I/O Peripheral</th>
<th>IRQ #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval timer</td>
<td>0</td>
</tr>
<tr>
<td>Pushbutton switch parallel port</td>
<td>1</td>
</tr>
<tr>
<td>Second Interval timer</td>
<td>2</td>
</tr>
<tr>
<td>JTAG port</td>
<td>8</td>
</tr>
<tr>
<td>JP1 Expansion parallel port</td>
<td>11</td>
</tr>
<tr>
<td>Arduino Header</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2. Hardware IRQ interrupt assignment for the DE10-Lite Computer.

3.1 Interrupts from Parallel Ports

Parallel ports implemented in the FPGA in the DE10-Lite Computer were illustrated in Figure 2, which is reproduced as Figure 11. As the figure shows, parallel ports that support interrupts include two related registers at the addresses Base + 8 and Base + C. The Interruptmask register, which has the address Base + 8, specifies whether or not an interrupt signal should be sent to the processor when the data present at an input port changes value. Setting a bit location in this register to 1 allows interrupts to be generated, while setting the bit to 0 prevents interrupts. Finally, the parallel port may contain an Edgecapture register at address Base + C. Each bit in this register has the value 1 if the corresponding bit location in the parallel port has changed its value from 0 to 1 since it was last read. Performing a write operation to the Edgecapture register sets all bits in the register to 0, and clears any associated interrupts.
3.1.1 Interrupts from the Pushbutton Keys

Figure 6, reproduced as Figure 12, shows the registers associated with the pushbutton parallel port. The Interrupt-mask register allows interrupts to be generated when a key is pressed. Each bit in the Edgecapture register is set to 1 by the parallel port when the corresponding key is pressed. An interrupt service routine can read this register to determine which key has been pressed. Writing any value to the Edgecapture register deasserts the interrupt signal being sent to the processor and sets all bits of the Edgecapture register to zero.

3.2 Interrupts from the JTAG* UART

Figure 8, reproduced as Figure 13, shows the data and Control registers of the JTAG UART. As we said in Section 2.4, RAVAIL in the Data register gives the number of characters that are stored in the receive FIFO, and WSPACE gives the amount of unused space that is available in the transmit FIFO. The RE and WE bits in Figure 13 are used to enable processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated when RAVAIL for the receive FIFO, or WSPACE for the transmit FIFO, exceeds 7. Pending interrupts are indicated in the Control register’s RI and WI bits, and can be cleared by writing or reading data to/from the JTAG UART.

3.3 Interrupts from the FPGA Interval Timer

Figure 9, in Section 2.5, shows six registers that are associated with the interval timer. As we said in Section 2.5, the TO bit in the Status register is set to 1 when the timer reaches a count value of 0. It is possible to generate an
interrupt when this occurs, by using the ITO bit in the Control register. Setting the ITO bit to 1 causes an interrupt request to be sent to the processor whenever TO becomes 1. After an interrupt occurs, it can be cleared by writing any value into the Status register.

3.4 Using Interrupts with Assembly Language Code

An example of assembly language code for the DE10-Lite Computer that uses interrupts is shown in Listing 5. When this code is executed on the DE10-Lite board it displays a rotating pattern on the LEDs. The pattern’s rotation can be toggled through pressing the pushbutton KEYs. Two types of interrupts are used in the code. The LEDs are controlled by an interrupt service routine for the interval timer, and another interrupt service routine is used to handle the pushbutton keys. The speed of the rotation is set in the main program, by using a counter value in the interval timer that causes an interrupt to occur every 50 msec.

The reset and exception handlers for the main program in Listing 5 are given in Listing 6. The reset handler simply jumps to the _start symbol in the main program. The exception handler first checks if the exception that has occurred is an external interrupt or an internal one. In the case of an internal exception, such as an illegal instruction opcode or a trap instruction, the handler simply exits, because it does not handle these cases. For external exceptions, it calls either the interval timer interrupt service routine, for a level 0 interrupt, or the pushbutton key interrupt service routine for level 1. These routines are shown in Listings 7 and 8, respectively.

3.5 Using Interrupts with C Language Code

An example of C language code for the DE10-Lite Computer that uses interrupts is shown in Listing 9. This code performs exactly the same operations as the code described in Listing 5.

To enable interrupts the code in Listing 9 uses macros that provide access to the Nios II status and control registers. A collection of such macros, which can be used in any C program, are provided in Listing 10.

The reset and exception handlers for the main program in Listing 9 are given in Listing 11. The function called the_reset provides a simple reset mechanism by performing a branch to the main program. The function named the_exception represents a general exception handler that can be used with any C program. It includes assembly language code to check if the exception is caused by an external interrupt, and, if so, calls a C language routine named interrupt_handler. This routine can then perform whatever action is needed for the specific application. In Listing 11, the interrupt_handler code first determines which exception has occurred, by using a macro from Listing 10 that reads the content of the Nios II interrupt pending register. The interrupt service routine that is
invoked for the interval timer is shown in 12, and the interrupt service routine for the pushbutton switches appears in Listing 13.

The source code files shown in Listing 5 to Listing 13 are distributed as part of the Intel FPGA Monitor Program. The files can be found under the heading *sample programs*, and are identified by the name *Interrupt Example*.

4 Media Components

This section describes the video-out port.

4.1 Video-out Port

The DE10-Lite Computer includes a video-out port connected to the on-board VGA controller that can be connected to a standard VGA monitor. The video-out port supports a screen resolution of 640 \(\times \) 480. The image that is displayed by the video-out port is derived from two sources: a *pixel* buffer, and a *character* buffer.

4.1.1 Pixel Buffer

The pixel buffer for the video-out port holds the data (color) for each pixel that will be displayed. As illustrated in Figure 14, the pixel buffer provides an image resolution of 160 \(\times \) 120 pixels, with the coordinate 0,0 being at the top-left corner of the image. Since the video-out port supports the screen resolution of 640 \(\times \) 480, each of the pixel values in the pixel buffer is replicated 3 times in both the \(x \) and \(y \) dimensions when it is being displayed on the screen.

![Figure 14. Pixel buffer coordinates.](image)

Figure 15a shows that each pixel color is represented as a 16-bit halfword, with five bits for the blue and red components, and six bits for green. As depicted in part b of Figure 15, pixels are addressed in the pixel buffer by using the combination of a *base* address and an \(x,y \) offset. In the DE10-Lite Computer the default address of the pixel
buffer is 0x08000000, which corresponds to the starting address of the FPGA on-chip memory. Using this scheme, the pixel at location 0,0 has the address 0x08000000, the pixel 1,0 has the address base + (00000000 00000001 0)2 = 0x08000002, the pixel 0,1 has the address base + (00000001 00000000 0)2 = 0x08000200, and the pixel at location 159,119 has the address base + (1110111 10011111 0)2 = 0x0800EF3E.

<table>
<thead>
<tr>
<th>15</th>
<th>11</th>
<th>10</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>green</td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pixel values

<table>
<thead>
<tr>
<th>31</th>
<th>...</th>
<th>17</th>
<th>16</th>
<th>...</th>
<th>9</th>
<th>8</th>
<th>...</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000100000000000</td>
<td>y</td>
<td>x</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pixel addresses

Figure 15. Pixel values and addresses.

You can create an image by writing color values into the pixel addresses as described above. A dedicated pixel buffer controller continuously reads this pixel data from sequential addresses in the corresponding memory for display on the screen. You can modify the pixel data at any time, simply by writing to the pixel addresses. Thus, an image can be changed even when it is in the process of being displayed. However, it is also possible to avoid making changes to the pixel buffer while it is being displayed, by using the concept of double-buffering. In this scheme, two pixel buffers are involved, called the front and back buffers, described below.

4.1.2 RGB Resampling

The DE10-Lite Computer contains an RGB Resampler for converting video streams between RGB color formats. Reading from the 32-bit Status register at address 0xFF203010 provides information about alpha/no alpha, color/grayscale, and mode for the incoming and outgoing formats. The incoming format for the DE10-Lite Computer video stream is 0x14, which corresponds to no alpha, color, 16-bit RGB (5-bit Red, 6-bit Green, 5-bit Blue). For more information, the reader should refer to the video module’s online documentation, *Video IP Cores for Intel DE-Series Boards*, which is available from Intel’s FPGA University Program web site.

4.1.3 Double Buffering

As mentioned above, a pixel buffer controller reads data out of the pixel buffer so that it can be displayed on the screen. This pixel buffer controller includes a programming interface in the form of a set of registers, as illustrated in Table 3. The register at address 0xFF203020 is called the Buffer register, and the register at address 0xFF203024 is the Backbuffer register. Each of these registers stores the starting address of a pixel buffer. The Buffer register holds the address of the pixel buffer that is displayed on the screen. As mentioned above, in the default configuration of the DE10-Lite Computer this Buffer register is set to the address 0x08000000, which points to the start of the FPGA on-chip memory. The default value of the Backbuffer register is also 0x08000000, which means that there is only one pixel buffer. But software can modify the address stored in the Backbuffer register, thereby creating a second pixel buffer. The pixel buffer can be located in the SDRAM memory in the DE10-Lite Computer, which has
the base address 0x00000000. Note that the pixel buffer cannot be located in the DDR3 memory in the DE10-Lite Computer, because the pixel buffer controller is not connected to the DDR3 memory. An image can be drawn into the second buffer by writing to its pixel addresses. This image is not displayed on the screen until a pixel buffer swap is performed, as explained below.

A pixel buffer swap is caused by writing the value 1 to the Buffer register. This write operation does not directly modify the content of the Buffer register, but instead causes the contents of the Buffer and Backbuffer registers to be swapped. The swap operation does not happen right away; it occurs at the end of a screen-drawing cycle, after the last pixel in the bottom-right corner has been displayed. This time instance is referred to as the vertical synchronization time, and occurs every 1/60 seconds. Software can poll the value of the S bit in the Status register, at address 0xFF20302C, to see when the vertical synchronization has happened. Writing the value 1 into the Buffer register causes S to be set to 1. Then, when the swap of the Buffer and Backbuffer registers has been completed S is reset back to 0.

<table>
<thead>
<tr>
<th>Address</th>
<th>Register Name</th>
<th>R/W</th>
<th>31...24</th>
<th>23...16</th>
<th>15...12</th>
<th>11...8</th>
<th>7...6</th>
<th>5...3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF203020</td>
<td>Buffer</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFF203024</td>
<td>BackBuffer</td>
<td>R/W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFF203028</td>
<td>Resolution</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFF20302C</td>
<td>Status</td>
<td>R</td>
<td>m</td>
<td>n</td>
<td></td>
<td>BS</td>
<td>SB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>W</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(1) Reserved. Read values are undefined. Write zero.

Table 3. Pixel Buffer Controller

In a typical application the pixel buffer controller is used as follows. While the image contained in the pixel buffer that is pointed to by the Buffer register is being displayed, a new image is drawn into the pixel buffer pointed to by the Backbuffer register. When this new image is ready to be displayed, a pixel buffer swap is performed. Then, the pixel buffer that is now pointed to by the Backbuffer register, which was already displayed, is cleared and the next new image is drawn. In this way, the next image to be displayed is always drawn in the “back” pixel buffer, and the two pixel buffer pointers are swapped when the new image is ready to be displayed. Each time a swap is performed software has to synchronize with the video-out port by waiting until the S bit in the Status register becomes 0.

As shown in Table 3 the Status register contains additional information other than the S bit. The fields n and m give the number of address bits used for the X and Y pixel coordinates, respectively. The BS field specifies the number of data bits per symbol minus one. The SB field specifies the number of symbols per beat minus one. The A field allows the selection of two different ways of forming pixel addresses. If configured with A = 0, then the pixel controller expects addresses to contain X and Y fields, as we have used in this section. But if A = 1, then the controller expects addresses to be consecutive values starting from 0 and ending at the total number of pixels−1. The EN field is used to enable or disable the DMA controller. If this bit is set to 0, the DMA controller will be turned off.

In Table 3 the default values of the status register fields in the DE10-Lite Computer are used when forming pixel addresses. The defaults are n = 9, m = 8, and A = 0. If the pixel buffer controller is changed to provide different values of these fields, then the way in which pixel addresses are formed has to be modified accordingly. The
programming interface also includes a Resolution register, shown in Table 3, that contains the X and Y resolution of the pixel buffer(s).

4.1.4 Character Buffer

The character buffer for the video-out port is stored in on-chip memory in the FPGA on the DE10-Lite board. As illustrated in Figure 16a, the buffer provides a resolution of 80×60 characters, where each character occupies an 8×8 block of pixels on the screen. Characters are stored in each of the locations shown in Figure 16a using their ASCII codes; when these character codes are displayed on the monitor, the character buffer automatically generates the corresponding pattern of pixels for each character using a built-in font. Part b of Figure 16 shows that characters are addressed in the memory by using the combination of a base address, which has the value 0x09000000, and an x,y offset. Using this scheme, the character at location 0,0 has the address 0x09000000, the character 0,1 has the address base + (000000 000001)\textsubscript{2} = 0x09000001, the character 0,1 has the address base + (000001 000000)\textsubscript{2} = 0x09000080, and the character at location 79,59 has the address base + (111011 1001111)\textsubscript{2} = 0x09001DCF.

![Character buffer coordinates](image1)

(a) Character buffer coordinates

![Character buffer addresses](image2)

(b) Character buffer addresses

Figure 16. Character buffer coordinates and addresses.

4.1.5 Using the Video-out Port with C code

A fragment of C code that uses the pixel and character buffers is shown in Listing 14. The first for loop in the figure draws a rectangle in the pixel buffer using the color pixel_color. The rectangle is drawn using the coordinates x_1, y_1 and x_2, y_2. The second while loop in the figure writes a null-terminated character string pointed to by the variable text_ptr into the character buffer at the coordinates x, y. The code in Listing 14 is included in the sample program called Video that is distributed with the Intel FPGA Monitor Program.
5 Modifying the DE10-Lite Computer

It is possible to modify the DE10-Lite Computer by using Intel’s Quartus® Prime software and Qsys tool. Tutorials that introduce this software are provided in the University Program section of Intel’s web site. To modify the system it is first necessary to make an editable copy of the DE10-Lite Computer. The files for this system are installed as part of the Monitor Program installation. Locate these files, copy them to a working directory, and then use the Quartus Prime and Qsys software to make any desired changes.

Table 4 lists the names of the Qsys IP cores that are used in this system. When the DE10-Lite Computer design files are opened in the Quartus Prime software, these cores can be examined using the Qsys System Integration tool. Each core has a number of settings that are selectable in the Qsys System Integration tool, and includes a datasheet that provides detailed documentation.

The steps needed to modify the system are:

1. Install the University Program IP Cores from Intel’s FPGA University Program web site
2. Copy the design source files for the DE10-Lite Computer from the University Program web site. These files can be found in the Design Examples section of the web site
3. Open the DE10-Lite_Computer.qpf project in the Quartus Prime software
4. Open the Qsys System Integration tool in the Quartus Prime software, and modify the system as desired
5. Generate the modified system by using the Qsys System Integration tool
6. It may be necessary to modify the Verilog or VHDL code in the top-level module, DE10-Lite_Computer.v/vhd, if any I/O peripherals have been added or removed from the system
7. Compile the project in the Quartus Prime software
8. Download the modified system into the DE10-Lite board

The DE10-Lite Computer includes a Nios II/f processor. When using the Quartus Prime Web Edition, compiling a design with a Nios II/s or Nios II/f processor will produce a time-limited SOF file. As a result, the board must remain connected to the host computer, and the design cannot be set as the default configuration, as discussed in Section 6. Designs using only Nios II/e processors and designs compiled using the Quartus Prime Subscription Edition do not have this restriction.
<table>
<thead>
<tr>
<th>I/O Peripheral</th>
<th>Qsys Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRAM</td>
<td>SDRAM Controller</td>
</tr>
<tr>
<td>SRAM</td>
<td>SRAM Controller</td>
</tr>
<tr>
<td>On-chip memory character buffer</td>
<td>Character Buffer for VGA Display</td>
</tr>
<tr>
<td>Red LED parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>7-segment displays parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Expansion parallel ports</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Arduino GPIO</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Slider switch parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Pushbutton parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>JTAG port</td>
<td>JTAG UART</td>
</tr>
<tr>
<td>Interval timer</td>
<td>Interval timer</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Accelerometer SPI Mode</td>
</tr>
<tr>
<td>System ID</td>
<td>System ID Peripheral</td>
</tr>
<tr>
<td>Audio/video configuration port</td>
<td>Audio and Video Config</td>
</tr>
<tr>
<td>Video port</td>
<td>Pixel Buffer DMA Controller</td>
</tr>
</tbody>
</table>

Table 4. Qsys cores used in the DE10-Lite Computer.
6 Making the System the Default Configuration

The DE10-Lite Computer can be loaded into the nonvolatile FPGA configuration memory on the DE10-Lite board, so that it becomes the default system whenever the board is powered on. Instructions for configuring the DE10-Lite board in this manner can be found in the tutorial *Introduction to the Quartus Prime Software*, which is available from Intel’s FPGA University Program.

7 Memory Layout

Table 5 summarizes the memory map used in the DE10-Lite Computer.

<table>
<thead>
<tr>
<th>Base Address</th>
<th>End Address</th>
<th>I/O Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>0x03FFFFFF</td>
<td>SDRAM</td>
</tr>
<tr>
<td>0x08000000</td>
<td>0x0800FFFF</td>
<td>FPGA On-chip Memory</td>
</tr>
<tr>
<td>0x09000000</td>
<td>0x09001FFF</td>
<td>FPGA On-chip Memory Character Buffer</td>
</tr>
<tr>
<td>0xFF200000</td>
<td>0xFF20000F</td>
<td>Red LEDs</td>
</tr>
<tr>
<td>0xFF200020</td>
<td>0xFF20002F</td>
<td>7-segment HEX3–HEX0 Displays</td>
</tr>
<tr>
<td>0xFF200030</td>
<td>0xFF20003F</td>
<td>7-segment HEX5–HEX4 Displays</td>
</tr>
<tr>
<td>0xFF200040</td>
<td>0xFF20004F</td>
<td>Slider Switches</td>
</tr>
<tr>
<td>0xFF200050</td>
<td>0xFF20005F</td>
<td>Pushbutton KEYS</td>
</tr>
<tr>
<td>0xFF200060</td>
<td>0xFF20006F</td>
<td>JP1 Expansion</td>
</tr>
<tr>
<td>0xFF200100</td>
<td>0xFF200100</td>
<td>Arduino GPIO</td>
</tr>
<tr>
<td>0xFF200110</td>
<td>0xFF20011F</td>
<td>Arduino Reset_N</td>
</tr>
<tr>
<td>0xFF201000</td>
<td>0xFF201007</td>
<td>JTAG UART</td>
</tr>
<tr>
<td>0xFF202000</td>
<td>0xFF20201F</td>
<td>Interval Timer</td>
</tr>
<tr>
<td>0xFF202020</td>
<td>0xFF20202F</td>
<td>Second Interval Timer</td>
</tr>
<tr>
<td>0xFF203020</td>
<td>0xFF20302F</td>
<td>Pixel Buffer Control</td>
</tr>
<tr>
<td>0xFF203030</td>
<td>0xFF203037</td>
<td>Character Buffer Control</td>
</tr>
</tbody>
</table>

Table 5. Memory layout used in the DE10-Lite Computer.
8 Intel FPGA Monitor Program Integration

As we mentioned earlier, the DE10-Lite Computer system, and the sample programs described in this document, are made available as part of the Intel FPGA Monitor Program. Figures 17 to 20 show a series of windows that are used in the Monitor Program to create a new project. In the first screen, shown in Figure 17, the user specifies a file system folder where the project will be stored, gives the project a name, and specifies the type of processor that is being used. Pressing Next opens the window in Figure 18. Here, the user can select the DE10-Lite Computer as a pre-designed system. The Monitor Program then fills in the relevant information in the System details box, which includes the appropriate system info and fpga configuration files, and preloader. The first of these files specifies to the Monitor Program information about the components that are available in the DE10-Lite Computer, such as the type of processor and memory components, and the address map. The second file is an FPGA programming bitstream for the DE10-Lite Computer, which can downloaded by the Monitor Program into the DE10-Lite board. Any system which contains a Hard Processor System (HPS) component must also specify the preloader to be run immediately following the circuit being downloaded. This preloader is used to configure the components within the HPS with the setting required for the specific board.

![Figure 17. Specifying the project folder and project name.](image-url)

DE10-Lite Computer System

For Quartus® Prime 18.0

Intel Corporation - FPGA University Program

June 2018
Pressing Next again opens the window in Figure 19. Here the user selects the type of program that will be used, such as Assembly language, or C. Then, the check box shown in the figure can be used to display the list of sample programs for the DE10-Lite Computer that are described in this document. When a sample program is selected in this list, its source files, and other settings, can be copied into the project folder in subsequent screens of the Monitor Program.

Figure 20 gives the final screen that is used to create a new project in the Monitor Program. This screen shows the default addresses of compiler and linker sections that will be used for the assembly language or C program associated with the Monitor Program project. In the figure, the drop-down menu called Linker Section Presets has been set to Exceptions. With this setting the Monitor Program uses specific compiler and linker sections for the selected processor. For the Nios II processor, these sections are for reset and exceptions code, and another section for the main program, called .text. For the A9 processor, it has a section for the exception table, called .vectors, and another section for the main program, called .text. It also shows the initial value used to set the main stack pointer for C programs, which is the starting address of the .stack section.

Figure 18. Specifying the DE10-Lite Computer system.
Figure 19. Selecting sample programs.

Figure 20. Setting offsets for .text and .data.
9 Appendix

This section contains all of the source code files mentioned in the document.

9.1 Parallel Ports

.include "address_map_nios2.s"

/***/
/* This program demonstrates use of parallel ports */
/* It performs the following: */
/* 1. displays a rotating pattern on the LEDs */
/* 2. if any KEY is pressed, the SW switches are used as the rotating pattern */
/***/

.text
.globa__start
__start:

/* initialize base addresses of parallel ports */
movia r15, SW_BASE
SW slider switch base address
movia r16, LED_BASE
LED base address
movia r17, KEY_BASE
pushbutton KEY base address
movia r18, LED_bits
ldwio r6, 0(r18)
load pattern for LED lights

DO_DISPLAY:
 ldwio r4, 0(r15)
 # load slider switches
 ldwio r5, 0(r17)
 # load pushbuttons
 beq r5, r0, NO_BUTTON
 mov r6, r4
 # copy SW switch values onto LEDs
 rol r4, r4, 8
 # the SW values are copied into the upper three bytes of the pattern register
 or r6, r6, r4
 # needed to make pattern consistent as all 32-bits of a register are rotated
 rol r4, r4, 8
 # but only the lowest 8-bits are displayed on LEDs
 or r6, r6, r4
 rol r4, r4, 8
 or r6, r6, r4
 WAIT:
 ldwio r5, 0(r17)
 # load pushbuttons
 bne r5, r0, WAIT
 # wait for button release

NO_BUTTON:
 stwio r6, 0(r16)
 # store to LED
 rol r6, r6, 1
 # rotate the displayed pattern
Listing 1. An example of Nios II assembly language code that uses parallel ports.
#include "address_map_nios2.h"
/* This program demonstrates use of parallel ports in the Computer System
 * 1. displays a rotating pattern on the LEDs
 * 2. if a KEY is pressed, uses the SW switches as the pattern
 */
int main(void) {
 volatile int * LED_ptr = (int *)LED_BASE; // LED address
 volatile int * SW_switch_ptr = (int *)SW_BASE; // SW slider switch address
 volatile int * KEY_ptr = (int *)KEY_BASE; // pushbutton KEY address

 int LED_bits = 0x0F0F0F0F; // pattern for LED lights
 int SW_value, KEY_value;
 volatile int delay_count; // volatile so the C compiler doesn’t remove the loop

 while (1) {
 SW_value = *(SW_switch_ptr); // read the SW slider (DIP) switch values
 KEY_value = *(KEY_ptr); // read the pushbutton KEY values
 if (KEY_value != 0) { // check if any KEY was pressed
 /* set pattern using SW values */
 LED_bits = SW_value | (SW_value << 8) | (SW_value << 16) | (SW_value << 24);
 while (*KEY_ptr); // wait for pushbutton KEY release
 }
 *(LED_ptr) = LED_bits; // light up the LEDs

 if (LED_bits & 0x80000000)
 LED_bits = (LED_bits << 1) | 1;
 else
 LED_bits = LED_bits << 1;

 for (delay_count = 350000; delay_count != 0; --delay_count)
 ; // delay loop
 }
}

Listing 2. An example of C code that uses parallel ports.
9.2 JTAG UART

.include "address_map_nios2.s"

/**
 * This program demonstrates use of the JTAG UART port
 *
 * It performs the following:
 * 1. sends a text string to the JTAG UART
 * 2. reads character data from the JTAG UART
 * 3. echos the character data back to the JTAG UART
 **/

.text # executable code follows
.global _start
_start:
/* set up stack pointer */
 movia sp, SDRAM_END - 3 # starts from largest memory address

 movia r6, JTAG_UART_BASE # JTAG UART base address

/* print a text string */
 movia r8, TEXT_STRING
LOOP:
 ldb r5, 0(r8)
 beq r5, zero, GET_JTAG # string is null-terminated
 call PUT_JTAG
 addi r8, r8, 1
 br LOOP

/* read and echo characters */
GET_JTAG:
 ldwio r4, 0(r6) # read the JTAG UART data register
 andi r8, r4, 0x8000 # check if there is new data
 beq r8, r0, GET_JTAG # if no data, wait
 andi r5, r4, 0x00ff # the data is in the least significant byte
 call PUT_JTAG # echo character
 br GET_JTAG

/**
 * Subroutine to send a character to the JTAG UART
 * r5 = character to send
 * r6 = JTAG UART base address
 **/
.global PUT_JTAG
PUT_JTAG:
/* save any modified registers */

Listing 3. An example of assembly language code that uses the JTAG UART (Part a).
Listing 3. An example of assembly language code that uses the JTAG UART (Part b).
```c
#include "JTAG_UART.h"
#include "address_map_nios2.h"

/*******************************************************************************
* Subroutine to send a character to the JTAG UART
******************************************************************************/
void put_jtag(volatile int * JTAG_UART_ptr, char c)
{
    int control;
    control = *(JTAG_UART_ptr + 1); // read the JTAG_UART control register
    if (control & 0xFFFF0000) // if space, echo character, else ignore
        *(JTAG_UART_ptr) = c;
}

/*******************************************************************************
* Subroutine to read a character from the JTAG UART
* Returns \0 if no character, otherwise returns the character
******************************************************************************/
char get_jtag(volatile int * JTAG_UART_ptr)
{
    int data;
    data = *(JTAG_UART_ptr); // read the JTAG_UART data register
    if (data & 0x00008000) // check RVALID to see if there is new data
        return ((char)data & 0xFF);
    else
        return ('\0');
}

Listing 4. An example of C code that uses the JTAG UART (Part a).
#include "JTAG_UART.h"
#include "address_map_nios2.h"

/*******************************************************************************
 * This program demonstrates use of the JTAG UART port
 *
 * It performs the following:
 * 1. sends a text string to the JTAG UART
 * 2. reads character data from the JTAG UART
 * 3. echos the character data back to the JTAG UART
******************************************************************************/

int main(void)
{
    volatile int * JTAG_UART_ptr = (int *)JTAG_UART_BASE; // JTAG UART address

    char text_string[] = "\nJTAG UART example code\n> \0";
    char *str, c;

    /* print a text string */
    for (str = text_string; *str != 0; ++str)
        put_jtag(JTAG_UART_ptr, *str);

    /* read and echo characters */
    while (1)
    {
        c = get_jtag(JTAG_UART_ptr);
        if (c != '\0')
            put_jtag(JTAG_UART_ptr, c);
    }
}

Listing 4. An example of C code that uses the JTAG UART (Part b).
9.3 Interrupts

.include "address_map_nios2.s"
.include "globals.s"

*num This program demonstrates use of interrupts. It
*num first starts an interval timer with 50 msec timeouts, and then enables
*num Nios II interrupts from the interval timer and pushbutton KEYs
*num
*num The interrupt service routine for the interval timer displays a pattern
*num on the LEDs, and shifts this pattern either left or right:
*num KEY[0]: loads a new pattern from the SW switches
*num KEY[1]: toggles the shift direction the displayed pattern
*******************************************************************************/

.text # executable code follows
.global _start
_start:
/* set up the stack */
    movia sp, SDRAM_END - 3 # stack starts from largest memory
    # address

    movia r16, TIMER_BASE # interval timer base address
/* set the interval timer period for scrolling the LED lights */
    movia r12, 5000000 # 1/(100 MHz) x (5 x 10^6) = 50 msec
    sthio r12, 8(r16) # store the low half word of counter
    # start value

    srl r12, r12, 16
    sthio r12, 0xC(r16) # high half word of counter start value
/* start interval timer, enable its interrupts */
    movi r15, 0b0111 # START = 1, CONT = 1, ITO = 1

    movia r7, 0x00000001 # get interrupt mask bit for interval
    or r7, r7, r8 # timer
    wrctl ienable, r7 # enable interrupts for the given mask
    # bits

    movi r7, 1 # turn on Nios II interrupt processing

IDLE:
br       IDLE        # main program simply idles

.data
 /*******************************************************************************
 * The global variables used by the interrupt service routines for the interval
 * timer and the pushbutton keys are declared below
 ******************************************************************************/
.global PATTERN
PATTERN:
.word 0x0F0F0F0F # pattern to show on the LED lights
.global SHIFT_DIR
SHIFT_DIR:
.word RIGHT # pattern shifting direction

.end

Listing 5. An example of assembly language code that uses interrupts.
/***********************************************************************
* RESET SECTION
* Note: "ax" is REQUIRED to designate the section as allocatable and executable.
* Also, the Debug Client automatically places the " resets section at the reset
* location specified in the CPU settings in SOPC Builder.
***********************************************************************
.section .reset, "ax"
      movia r2, _start
      jmp r2                      # branch to main program

/***********************************************************************
* EXCEPTIONS SECTION
* Note: "ax" is REQUIRED to designate the section as allocatable and executable.
* Also, the Monitor Program automatically places the "exceptions" section at
* the exception location specified in the CPU settings in SOPC Builder.
***********************************************************************
.section .exceptions, "ax"
      .global EXCEPTION_HANDLER
      EXCEPTION_HANDLER:
      subi   sp, sp, 16             # make room on the stack
      stw    et, 0(sp)
      rdctl  et, ct14
      beq    et, r0, SKIP_EA_DEC    # interrupt is not external
      subi   ea, ea, 4              # must decrement ea by one instruction
      # for external interrupts, so that the
      # interrupted instruction will be run
      SKIP_EA_DEC:
      stw    ea, 4(sp)              # save all used registers on the Stack
      stw    ra, 8(sp)              # needed if call inst is used
      stw    r22, 12(sp)
      rdctl  et, ct14
      bne    et, r0, CHECK_LEVEL_0  # interrupt is an external interrupt
      NOT_EI:
      br     END_ISR
      CHECK_LEVEL_0:
      andi   r22, et, 0b1
      beq    r22, r0, CHECK_LEVEL_1
      call   INTERVAL_TIMER_ISR
      br     END_ISR
      CHECK_LEVEL_1:

Listing 6. Reset and exception handler assembly language code.

```assembly
andi r22, et, 0b10
beq r22, r0, END_ISR # other interrupt levels are not handled in
 # this code

call PUSHBUTTON_ISR

END_ISR:

ldw et, 0(sp) # restore all used register to previous
 # values
ldw ea, 4(sp)
ldw ra, 8(sp) # needed if call inst is used
ldw r22, 12(sp)
addi sp, sp, 16

.end
```
.include "address_map_nios2.s"
.include "globals.s"
.extern PATTERN # externally defined variables
.extern SHIFT_DIR

/*******************************************************************************
* Interval timer - Interrupt Service Routine
*-shifts a PATTERN being displayed. The shift direction is determined by the
* external variable SHIFT_DIR.
******************************************************************************/
.global INTERVAL_TIMER_ISR
INTERVAL_TIMER_ISR:
subi sp, sp, 40 # reserve space on the stack
stw ra, 0(sp)
stw r4, 4(sp)
stw r5, 8(sp)
stw r6, 12(sp)
stw r8, 16(sp)
stw r10, 20(sp)
stw r20, 24(sp)
stw r21, 28(sp)
stw r22, 32(sp)
stw r23, 36(sp)

movia r10, TIMER_BASE # interval timer base address
sthio r0, 0(r10) # clear the interrupt

movia r20, LED_BASE # LED base address
movia r21, PATTERN # set up a pointer to the display pattern
movia r22, SHIFT_DIR # set up a pointer to the shift direction variable

ldw r6, 0(r21) # load the pattern
stwio r6, 0(r20) # store to LEDs

CHECK_SHIFT:
  ldw r5, 0(r22) # get shift direction
  movi r8, RIGHT
  bne r5, r8, SHIFT_L

SHIFT_R:
  movi r5, 1 # set r5 to the constant value 1
  ror r6, r6, r5 # rotate the displayed pattern right
  br STORE_PATTERN

SHIFT_L:
  movi r5, 1 # set r5 to the constant value 1
  rol r6, r6, r5 # shift left

STORE_PATTERN:
  stw r6, 0(r21) # store display pattern
Listing 7. Interrupt service routine for the interval timer.

```assembly
END_INTERVAL_TIMER_ISR:
 ldw ra, 0(sp) # restore registers
 ldw r4, 4(sp)
 ldw r5, 8(sp)
 ldw r6, 12(sp)
 ldw r8, 16(sp)
 ldw r10, 20(sp)
 ldw r20, 24(sp)
 ldw r21, 28(sp)
 ldw r22, 32(sp)
 ldw r23, 36(sp)
 addi sp, sp, 40 # release the reserved space on the stack
.end
```
.include "address_map_nios2.s"
.include "globals.s"
.extern PATTERN            # externally defined variables
.extern SHIFT_DIR

 /******************************************************************************
 * Pushbutton - Interrupt Service Routine
 * This routine checks which KEY has been pressed and updates the global
 * variables as required.
 */

.global  PUSHBUTTON_ISR
PUSHBUTTON_ISR:
    subi    sp, sp, 20   # reserve space on the stack
    stw     ra, 0(sp)
    stw     r10, 4(sp)
    stw     r11, 8(sp)
    stw     r12, 12(sp)
    stw     r13, 16(sp)

    movia  r10, KEY_BASE   # base address of pushbutton KEY
            # parallel port
    ldwio   r11, 0xC(r10)   # read edge capture register
    stwio   r11, 0xC(r10)   # clear the interrupt

CHECK_KEY0:
    andi   r13, r11, 0b0001   # check KEY0
    beq    r13, zero, CHECK_KEY1

    movia  r10, SW_BASE      # base address of SW slider
            # switches parallel port
    ldwio   r12, 0(r10)      # load a new pattern from the SW
            # switches
    movia  r10, PATTERN      # set up a pointer to the pattern
            # variable
    stw    r12, 0(r10)       # store the new pattern to the
            # global variable

CHECK_KEY1:
    andi   r13, r11, 0b0010   # check KEY1
    beq    r13, zero, END_PUSHBUTTON_ISR

    movia  r10, SHIFT_DIR     # set up a pointer to the shift
            # direction variable
    ldw    r12, 0(r10)        # load the current shift direction
    xor    r12, r12, 1        # toggle the direction
    stw    r12, 0(r10)        # store the new shift direction

END_PUSHBUTTON_ISR:
    ldw    ra, 0(sp)          # Restore all used register to
            # previous
    ldw    r10, 4(sp)
Listing 8. Interrupt service routine for the pushbutton KEYS.

```
ldw r11, 8(sp)
ldw r12, 12(sp)
ldw r13, 16(sp)
addi sp, sp, 20

.end
```
#include "address_map_nios2.h"
#include "globals.h" // defines global values
#include "nios2_ctrl_reg_macros.h"

// the global variables are written by interrupt service routines; we have to
// declare
// these as volatile to avoid the compiler caching their values in registers */
volatile int pattern = 0x0000000F; // pattern for shifting
volatile int shift_dir = LEFT; // direction to shift the pattern
volatile int shift_enable = ENABLE; // enable/disable shifting of the pattern

/*******************************************************************************
 * This program demonstrates use of interrupts. It
 * first starts the interval timer with 50 msec timeouts, and then enables
 * Nios II interrupts from the interval timer and pushbutton KEYs
 *
 * The interrupt service routine for the interval timer displays a pattern on
 * the LED lights, and shifts this pattern either left or right. The shifting
 * direction is reversed when KEY[1] is pressed
*******************************************************************************/
int main(void) {
    /* Declare volatile pointers to I/O registers (volatile means that IO load
       * and store instructions will be used to access these pointer locations,
       * instead of regular memory loads and stores)
       */
    volatile int * interval_timer_ptr =
        (int *)TIMER_BASE; // internal timer base address
    volatile int * KEY_ptr = (int *)KEY_BASE; // pushbutton KEY address

    /* set the interval timer period for scrolling the LED lights */
    int counter = 2500000; // 1/(50 MHz) x (2500000) = 50 msec
    *(interval_timer_ptr + 0x2) = (counter & 0xFFFF);
    *(interval_timer_ptr + 0x3) = (counter >> 16) & 0xFFFF;

    /* start interval timer, enable its interrupts */
    *(interval_timer_ptr + 1) = 0x7; // STOP = 0, START = 1, CONT = 1, ITO = 1

    *(KEY_ptr + 2) = 0x3; // enable interrupts for all pushbuttons

    /* set interrupt mask bits for levels 0 (interval timer) and level 1
       * (pushbuttons) */
    NIOS2_WRITE_IENABLE(0x3);

    NIOS2_WRITE_STATUS(1); // enable Nios II interrupts

    while (1)
        ; // main program simply idles
}

Listing 9. An example of C code that uses interrupts.
#ifndef __NIOS2_CTRL_REG_MACROS__
#define __NIOS2_CTRL_REG_MACROS__

//===----------------------------------------------------------------------===
// * Macros for accessing the control registers.
//===----------------------------------------------------------------------===

#define NIOS2_READ_STATUS(dest)  
   do { dest = __builtin_rdctl(0); } while (0)

#define NIOS2_WRITE_STATUS(src)  
   do { __builtin_wrctl(0, src); } while (0)

#define NIOS2_READ_ESTATUS(dest) 
   do { dest = __builtin_rdctl(1); } while (0)

#define NIOS2_READ_BSTATUS(dest) 
   do { dest = __builtin_rdctl(2); } while (0)

#define NIOS2_READ_IENABLE(dest) 
   do { dest = __builtin_rdctl(3); } while (0)

#define NIOS2_WRITE_IENABLE(src) 
   do { __builtin_wrctl(3, src); } while (0)

#define NIOS2_READ_IPENDING(dest) 
   do { dest = __builtin_rdctl(4); } while (0)

#define NIOS2_READ_CPUID(dest) 
   do { dest = __builtin_rdctl(5); } while (0)

#endif

Listing 10. Macros for accessing Nios II status and control registers.
#include "nios2_ctrl_reg_macros.h"

/* function prototypes */
void main(void);
void interrupt_handler(void);
void interval_timer_ISR(void);
void pushbutton_ISR(void);

/* The assembly language code below handles CPU reset processing */
void the_reset(void) __attribute__((section(".reset")));
void the_reset(void)
{
    asm(".set noat"); /* Instruct the assembler NOT to use reg at (r1) as
                      * a temp register for performing optimizations */
    asm(".set nobreak"); /* Suppresses a warning message that says that
                      * some debuggers corrupt regs bt (r25) and ba
                      * (r30) */
    asm("movia r2, main"); // Call the C language main program
    asm("jmp r2");
}

/* The assembly language code below handles CPU exception processing. This
 * code should not be modified; instead, the C language code in the function
 * interrupt_handler() can be modified as needed for a given application.
 */
void the_exception(void) __attribute__((section(".exceptions")));
void the_exception(void)
{
    asm("subi sp, sp, 128");
    asm("stw et, 96(sp)");
    asm("rdctl et,ctl14");
    asm("beq et, r0, SKIP_EA_DEC"); // Interrupt is not external
    asm("subi ea, ea, 4"); /* Must decrement ea by one instruction
                              * for external interupts, so that the
                              * interrupted instruction will be run */
    asm("SKIP_EA_DEC:");
    asm("stw r1, 4(sp)"); // Save all registers
    asm("stw r2, 8(sp)");
asm("stw r3, 12(sp)");
asm("stw r4, 16(sp)");
asm("stw r5, 20(sp)");
asm("stw r6, 24(sp)");
asm("stw r7, 28(sp)");
asm("stw r8, 32(sp)");
asm("stw r9, 36(sp)");
asm("stw r10, 40(sp)");
asm("stw r11, 44(sp)");
asm("stw r12, 48(sp)");
asm("stw r13, 52(sp)");
asm("stw r14, 56(sp)");
asm("stw r15, 60(sp)");
asm("stw r16, 64(sp)");
asm("stw r17, 68(sp)");
asm("stw r18, 72(sp)");
asm("stw r19, 76(sp)");
asm("stw r20, 80(sp)");
asm("stw r21, 84(sp)");
asm("stw r22, 88(sp)");
asm("stw r23, 92(sp)");
asm("stw r24, 96(sp)"); // r24 = et, because it is saved above
asm("stw r25, 100(sp)"); // r25 = bt (skip r24 = et, because it is saved above)
asm("stw r26, 104(sp)"); // r26 = sp
// skip r27 because it is sp, and there is no point in saving this
asm("stw r27, 108(sp)"); // r27 = bp
asm("stw r28, 112(sp)"); // r28 = fp
asm("stw r29, 116(sp)"); // r29 = sp
asm("stw r30, 120(sp)"); // r30 = ba
asm("stw r31, 124(sp)"); // r31 = ra
asm("addi fp, sp, 128");
asm("call interrupt_handler"); // Call the C language interrupt handler
asm("ldw r1, 4(sp)"); // Restore all registers
asm("ldw r2, 8(sp)");
asm("ldw r3, 12(sp)");
asm("ldw r4, 16(sp)");
asm("ldw r5, 20(sp)");
asm("ldw r6, 24(sp)");
asm("ldw r7, 28(sp)");
asm("ldw r8, 32(sp)");
asm("ldw r9, 36(sp)");
asm("ldw r10, 40(sp)");
asm("ldw r11, 44(sp)");
asm("ldw r12, 48(sp)");
asm("ldw r13, 52(sp)");
asm("ldw r14, 56(sp)");
asm("ldw r15, 60(sp)");
asm("ldw r16, 64(sp)");
asm("ldw r17, 68(sp)");
asm("ldw r18, 72(sp)");
asm("ldw r19, 76(sp)");
asm("ldw r20, 80(sp)");
asm("ldw r21, 84(sp)");
asm("ldw r22, 88(sp)");
asm("ldw r23, 92(sp)");
asm("ldw r24, 96(sp)");
asm("ldw r25, 100(sp)"); // r25 = bt
asm("ldw r26, 104(sp)"); // r26 = gp
  // skip r27 because it is sp, and we did not save this on the stack
asm("ldw r28, 112(sp)"); // r28 = fp
asm("ldw r29, 116(sp)"); // r29 = ea
asm("ldw r30, 120(sp)"); // r30 = ba
asm("ldw r31, 124(sp)"); // r31 = ra

asm("addi sp, sp, 128");
asm("eret");

void interrupt_handler(void) {
  int ipending;
  NIOS2_READ_IPENDING(ipending);
  if (ipending & 0x1) // interval timer is interrupt level 0
    { 
      interval_timer_ISR();
    }
  if (ipending & 0x2) // pushbuttons are interrupt level 1
    { 
      pushbutton_ISR();
    }
  // else, ignore the interrupt
  return;
}

Listing 11. Reset and exception handler C code.
#include "address_map_nios2.h"
#include "globals.h" // defines global values

extern volatile int pattern, shift_dir, shift_enable;

/*******************************************************************************
 * Interval timer interrupt service routine
 * Shifts a PATTERN being displayed on the LED lights. The shift direction
 * is determined by the external variable key_dir.
******************************************************************************/
void interval_timer_ISR() {
    volatile int *interval_timer_ptr = (int *)TIMER_BASE;
    volatile int *LEDG_ptr = (int *)LED_BASE; // LED address

    *(interval_timer_ptr) = 0; // clear the interrupt
    *(LEDG_ptr) = pattern; // display pattern on LED

    if (shift_enable == DISABLE) // check if shifting is disabled
        return;

    /* rotate the pattern shown on the LEDG lights */
    if (shift_dir == LEFT) // rotate left
        if (pattern & 0x80000000)
            pattern = (pattern << 1) | 1;
        else
            pattern = pattern << 1;
    else // rotate right
        if (pattern & 0x00000001)
            pattern = (pattern >> 1) | 0x80000000;
        else
            pattern = (pattern >> 1) & 0x7FFFFFFF;

    return;
}

Listing 12. Interrupt service routine for the interval timer.
#include "address_map_nios2.h"
#include "globals.h" // defines global values

extern volatile int pattern, shift_dir, shift_enable;

/*****************************************
 * Pushbutton - Interrupt Service Routine
 * This routine checks which KEY has been pressed and updates the global
 * variables as required.
 ******************************************/

void pushbutton_ISR(void) {
    volatile int * KEY_ptr = (int *)KEY_BASE;
    volatile int * slider_switch_ptr = (int *)SW_BASE;

    int press;

    press = *(KEY_ptr + 3); // read the pushbutton interrupt register
    *(KEY_ptr + 3) = press; // Clear the interrupt

    if (press & 0x1) // KEY0
        pattern = *slider_switch_ptr;

    if (press & 0x2) // KEY1
        shift_dir = shift_dir ^ 1;

    return;
}

Listing 13. Interrupt service routine for the pushbutton KEYS.
### 9.4 Video Out

```c
#include "address_map_nios2.h"

/* function prototypes */
void video_text(int, int, char *);
void video_box(int, int, int, int, short);
int resample_rgb(int, int);
int get_data_bits(int);

#define STANDARD_X 320
#define STANDARD_Y 240
#define INTEL_BLUE 0x0071C5

/* global variables */
int screen_x;
int screen_y;
int res_offset;
int col_offset;

/* This program demonstrates use of the video in the computer system. */
/* Draws a blue box on the video display, and places a text string inside the */
/* box */

int main(void) {
 volatile int * video_resolution = (int *)(PIXEL_BUF_CTRL_BASE + 0x8);
 screen_x = *video_resolution & 0xFFFF;
 screen_y = (*video_resolution >> 16) & 0xFFFF;

 volatile int * rgb_status = (int *)(RGB_RESAMPLER_BASE);
 int db = get_data_bits(*rgb_status & 0x3F);

 /* check if resolution is smaller than the standard 320 x 240 */
 res_offset = (screen_x == 160) ? 1 : 0;

 /* check if number of data bits is less than the standard 16-bits */
 col_offset = (db == 8) ? 1 : 0;

 /* create a message to be displayed on the video and LCD displays */
 char text_top_row[40] = "Intel FPGA\0";
 char text_bottom_row[40] = "Computer Systems\0";

 /* update color */
 short background_color = resample_rgb(db, INTEL_BLUE);

 video_text(35, 29, text_top_row);
 video_text(32, 30, text_bottom_row);
 video_box(0, 0, STANDARD_X, STANDARD_Y, 0); // clear the screen
 video_box(31 * 4, 28 * 4, 49 * 4 - 1, 32 * 4 - 1, background_color);
}
```
DE10-LITE COMPUTER SYSTEM

For Quartus® Prime 18.0

/*******************************************************************************
* Subroutine to send a string of text to the video monitor
******************************************************************************/
void video_text(int x, int y, char * text_ptr) {
    int offset;
    volatile char * character_buffer =
                   (char *)FPGA_CHAR_BASE; // video character buffer

    /* assume that the text string fits on one line */
    offset = (y << 7) + x;
    while (*(text_ptr)) {
        *(character_buffer + offset) = *(text_ptr); // write to the character buffer
        ++text_ptr;
        ++offset;
    }
}

/*******************************************************************************
* Draw a filled rectangle on the video monitor
* Takes in points assuming 320x240 resolution and adjusts based on differences
* in resolution and color bits.
******************************************************************************/
void video_box(int x1, int y1, int x2, int y2, short pixel_color) {
    int pixel_buf_ptr = *(int *)PIXEL_BUF_CTRL_BASE;
    int pixel_ptr, row, col;
    int x_factor = 0x1 << (res_offset + col_offset);
    int y_factor = 0x1 << (res_offset);
    x1 = x1 / x_factor;
    x2 = x2 / x_factor;
    y1 = y1 / y_factor;
    y2 = y2 / y_factor;

    /* assume that the box coordinates are valid */
    for (row = y1; row <= y2; row++)
        for (col = x1; col <= x2; ++col) {
            pixel_ptr = pixel_buf_ptr +
                        (row << (10 - res_offset - col_offset)) + (col << 1);
            *(short *)pixel_ptr = pixel_color; // set pixel color
        }
}

/*******************************************************************************
* Resamples 24-bit color to 16-bit or 8-bit color
*******************************************************************************
int resample_rgb(int num_bits, int color) {
    if (num_bits == 8) {
        color = (((color >> 16) & 0x000000E0) | ((color >> 11) & 0x0000001C) |
                   ((color >> 6) & 0x00000003));
        color = (color << 8) | color;
    } else if (num_bits == 16) {
color = (((color >> 8) & 0x0000F800) | ((color >> 5) & 0x000007E0) | ((color >> 3) & 0x0000001F));

} return color;

/********************************************************************************
 * Finds the number of data bits from the mode
 ********************************************************************************/
int get_data_bits(int mode) {
    switch (mode) {
    case 0x0:
        return 1;
    case 0x7:
        return 8;
    case 0x11:
        return 8;
    case 0x12:
        return 9;
    case 0x14:
        return 16;
    case 0x17:
        return 24;
    case 0x19:
        return 30;
    case 0x31:
        return 8;
    case 0x32:
        return 12;
    case 0x33:
        return 16;
    case 0x37:
        return 32;
    case 0x39:
        return 40;
    }
}

Listing 14. An example of code that uses the video-out port.
### 9.5 Floating Point

```c
#include <stdio.h>

int flush()
{
 while (getchar() != '
')
 {
 return 1;
 }
}

int main(void)
{
 float x, y, add, sub, mult, div;

 while (1)
 {
 printf("Enter FP values X: ");

 while ((scanf("%f", &x) != 1) && flush())
 {
 printf("%f\n", x); // echo the typed data to the Terminal window
 }

 printf("Enter FP values Y: ");

 while ((scanf("%f", &y) != 1) && flush())
 {
 printf("%f\n", y); // echo the typed data to the Terminal window
 }

 add = x + y;
 sub = x - y;
 mult = x * y;
 div = x / y;

 printf("X + Y = %f\n", add);
 printf("X - Y = %f\n", sub);
 printf("X * Y = %f\n", mult);
 printf("X / Y = %f\n", div);
 }
}
```

Listing 15. An example of code that uses floating-point variables.
Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.