
DE0-Nano-SoC Computer System
with ARM* Cortex* A9

For Quartus® Prime 17.1

1 Introduction

This document describes a computer system that can be implemented on the Intel® DE0-Nano-SoC development and
education board. This system, called the DE0-Nano-SoC Computer, is intended for use in experiments on computer
organization and embedded systems.

To support such experiments, the system contains embedded processors, memory, and various I/O peripherals. The
FPGA programming file that implements this system, as well as its design source files, can be obtained from the
University Program section of Intel’s web site.

2 DE0-Nano-SoC Computer Contents

A block diagram of the DE0-Nano-SoC Computer system is shown in Figure 1. As indicated in the figure, the com-
ponents in this system are implemented utilizing the Hard Processor System (HPS) and FPGA inside the Cyclone®

V SoC chip. The HPS comprises an ARM* Cortex* A9 dual-core processor, a DDR3 memory port, and a set of
peripheral devices. The FPGA implements two Intel Nios® II processors and several peripheral ports: memory,
timer modules, analog-to-digital, parallel ports connected to switches and lights, and expansion ports.

2.1 Hard Processor System

The hard processor system (HPS), as shown in Figure 1, includes an ARM Cortex A9 dual-core processor. The A9
dual-core processor features two 32-bit CPUs and associated subsystems that are implemented as hardware circuits
in the Intel Cyclone V SoC chip. An overview of the ARM A9 processor can be found in the document Introduction
to the ARM Processor, which is provided in Intel’s FPGA University Program web site. All of the I/O peripherals in
the DE0-Nano-SoC Computer are accessible by the processor as memory mapped devices, using the address ranges
that are given in this document. A summary of the address map can be found in Section 6.

A good way to begin working with the DE0-Nano-SoC Computer and the ARM A9 processor is to make use of a
utility called the Intel® FPGA Monitor Program. It provides an easy way to assemble/compile ARM A9 programs
written in either assembly language or the C language. The Monitor Program, which can be downloaded from
Intel’s web site, is an application program that runs on the host computer connected to the DE0-Nano-SoC board.
The Monitor Program can be used to control the execution of code on the ARM A9, list (and edit) the contents of
processor registers, display/edit the contents of memory on the DE0-Nano-SoC board, and similar operations. The
Monitor Program includes the DE0-Nano-SoC Computer as a pre-designed system that can be downloaded onto
the DE0-Nano-SoC board, as well as several sample programs in assembly language and C that show how to use
the DE0-Nano-SoC Computer’s peripherals. Section 7 describes how the DE0-Nano-SoC Computer is integrated

Intel Corporation - FPGA University Program
November 2017

1

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

with the Monitor Program. An overview of the Monitor Program is available in the document Intel® FPGA Monitor
Program Tutorial, which is provided in the University Program web site.

Expansion
ports

Cyclone V
FPGA

Timers

SW3-0
LEDG7-0

Parallel
ports

Parallel
ports

KEY1-0

On-chip
memory

Host computer

USB
BlasterPeripherals

DE0-Nano-SoC

DDR3
port

DDR3
chips

JTAG
ports

Parallel
ports

ARM

MPCore

Cortex A9

Timers
Cyclone V
HPS

Ports

. . .

Board

Nios II

FPGA Bridges

LEDG

Port

KEY ADC

Port

(2)

G-Sensor

Port

Parallel
ports

Arduino
port

Figure 1. Block diagram of the DE0-Nano-SoC Computer.

2.2 Memory

The HPS includes a memory port that connects the ARM MPCORE* to a 1 GB DDR3 memory. This memory is
normally used as the storage location of programs and data used by the ARM processors. The memory is organized
as 256M x 32-bits, and is accessible using word accesses (32 bits), halfwords, and bytes. The DDR3 memory is
mapped to the address space 0x00000000 to 0x3FFFFFFF. There is also a 64 KB on-chip memory available inside
each ARM A9 processor. This small memory is organized as 16K x 32-bits, and is mapped to the address space
0xFFFF0000 to 0xFFFFFFFF.

2.3 Pushbutton KEY and LED Port

The HPS includes a general purpose I/O port, called GPIO1, that is accessible by the ARM A9 processor. As
illustrated in Figure 2, this parallel port is assigned the Base address 0xFF709000, and includes several 32-bit
registers. These registers can be read or written using word accesses. Only two bit locations in GPIO1 are used for
the DE0-Nano-SoC Computer. Bit 24 of the data register (DR) is connected to a green light, LEDG, and bit 25 is

2 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

connected to a pushbutton switch, KEY. To use these devices, the data direction register (DDR) shown in the figure
has to be configured such that bit 24 is an output and bit 25 is an input. Writing a 1 into a corresponding bit position
in the DDR sets this bit as an output, while writing a 0 sets the bit as an input. After the direction bits have been
set, the green light LEDG can be turned on/off by writing to bit 24 in the data register. The value of the pushbutton
switch KEY can be obtained by reading the external port register and checking the value of bit 25. An example
program for the ARM A9 processor that uses GPIO1 is given in Section 2.4.

As indicated in Figure 2, the GPIO1 port includes several other registers in addition to the DR and DDR registers.
These other registers are mostly used for setting characteristics of input pins, which affects only the KEY input in
our system. Detailed information about these registers can be found in the Intel Cyclone V Hard Processor System
documentation, which is available on Intel’s website.

Address 02431 25. . .

0xFF709000

0xFF709050

0xFF709004

Unused Data register

External port register

Unused

Data direction register

... not shown

23 . . .

0xFF709030 Interrupt enable register

0xFF709060 Level sync register

... not shown

Figure 2. Parallel port GPIO1.

2.4 Timer Modules

The HPS includes several hardware timer modules that can be used to keep track of time intervals. The ARM A9
MPCore includes one private timer module for each A9 core, and the HPS provides four other timer modules that
can be used by either A9 core. The timers are described in more detail below.

2.4.1 ARM* A9* MPCore* Timers

Figure 3 shows the registers in the programmer’s interface for each A9 core private timer. These registers have the
base address 0xFFFEC600, as shown in the figure, and can be read or written using word accesses. To use the
timer, it is necessary to first write an initial count value into the Load register. The timer can then be started by
setting the enable bit E in the Control register to 1, and it can be stopped by setting E back to 0. Once enabled the
timer decrements its count value until reaching 0. When it reaches 0, the timer sets the F bit in the Interrupt status
register. The F bit can be checked by software using polled-I/O to determine when the timer period has expired. The
F bit can be reset to 0 by writing a 1 into it. Also, if bit I in the Control register is set to 1, then a processor interrupt
can be generated when the timer reaches 0. Using interrupts with the timer is discussed in Section 3.

Intel Corporation - FPGA University Program
November 2017

3

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

When it reaches 0, the timer will stop if the auto bit (A) in the control register is set to 0. But if bit A is set to 1, then
the timer will automatically reload the value in the Load register and continue decrementing. The current value of
the timer is available to software in the Counter register shown in Figure 3. The timer uses a clock frequency of 200
MHz. The Prescaler field in the Control register can be used to slow down the counting rate, as follows. The timer
decrements each Prescaler +1 clock cycle. Therefore, if Prescaler = 0, then the timer decrements every clock cycle,
if Prescaler = 1, the timer decrements every second clock cycle, and so on.

EAI

F

Address 01531 116 2

Load value 0xFFFEC600

Current value0xFFFEC604

Unused0xFFFEC608

Unused0xFFFEC60C

7

Control

Interrupt status

Prescaler

8

Counter

Load

Unused

3 Register name

Figure 3. ARM A9 private timer port.

2.4.2 HPS Timers

Figure 4 shows the registers in the programmer’s interface for one of the HPS timers. These registers have the base
address 0xFFC08000, as shown in the figure, and can be read or written using word accesses. To configure the
timer, it is necessary to ensure that it is stopped by setting the enable bit E in the Control register to 0. A starting
count value for the timer can then be written into the Load register. To instruct the timer to use the specified starting
count value, the M in the Control register should be set to 1, and the timer can be started by setting E = 1. The timer
counts down to 0, and then sets both bit F in the End-of-interrupt register and bit S in the Interrupt status register to
1. Software can poll the value of S to determine when the timer period has expired. The S bit, and the F bit can be
reset to 0 by reading the contents of the End-of-Interrupt register. Also, if bit I , the interrupt mask bit, in the Control
register is set to 0, then an interrupt can be generated when the timer reaches 0 (note that bit I in the ARM A9 private
timer shown in Figure 3 has the opposite polarity). The use of interrupts with the timer is discussed in Section 3.

The current value of the timer is available to software in the Counter register shown in Figure 4. The timer uses a
clock frequency of 100 MHz.

There are three other identical timers in the HPS, with the following base addresses: 0xFFC09000, 0xFFD00000,
and 0xFFD01000. The first of these timers uses a 100 MHz clock, and the last two timers use a 25 MHz clock.

We should mention that other timer modules also exist in the HPS. The ARM A9 MPCore has a global timer that is
shared by both A9 cores, as well as a watchdog timer for each processor. Also, the HPS has two additional watchdog
timers. Documentation about the global timer and watchdog timers is available in the ARM Cortex A9 MPCore
Technical Reference Manual, and in the Intel Cyclone V Hard Processor System Technical Reference Manual.

4 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

EMI

F

Address 01531 116 2

Load value 0xFFC08000

Current value0xFFC08004

Unused0xFFC08008

Unused0xFFC0800C

Control

End-of-Interrupt

Counter

Load

Register name

SUnused0xFFC08010 Interrupt status

Figure 4. HPS timer port.

2.4.3 Using a Timer with Assembly Language Code

An example of ARM A9 assembly language code is included in the Appendix in Listing 1. The code configures the
private timer for the A9 core so that it produces one-second timeouts. An infinite loop is used to flash the green light
connected to GPIO1, discussed in Section 2.3. The light is turned on for one second, then off, and so on.

An example of C code is also included in Listing 2. This code performs the same actions as the assembly language
program in Listing 1—it flashes on/off the green light connected to GPIO1 at one-second intervals.

The source code files shown in Listings 2 and 1 are distributed as part of the Intel® FPGA Monitor Program. The
files can be found under the heading sample programs, and are identified by the name Timer Lights.

2.5 FPGA Bridges

The FPGA bridges depicted in Figure 1 provide connections between the HPS and FPGA in the Cyclone V SoC
device. The bridges are enabled, or disabled, by using the Bridge reset register, which is illustrated in Figure 5 and
has the address 0xFFD0501C. Three distinct bridges exist, called HPS-to-FPGA, lightweight HPS-to-FPGA, and
FPGA-to-HPS. In the DE0-Nano-SoC Computer the first two of these bridges are used to connect the ARM A9
processor to the FPGA. As indicated in Figure 5 the bridges are enabled/disabled by bits 0−2 of the Bridge reset
register. To use the memory-mapped peripherals in the FPGA, software running on the ARM A9 must enable the
HPS-to-FPGA and lightweight HPS-to-FPGA bridges by setting bits #0 and #1 of the Bridge reset register to 0.
We should note that if a user program is downloaded and run on the ARM A9 by using the Intel® FPGA Monitor
Program, described in Section 7, then these bridges are automatically enabled before the user program is started.

In addition to the components described above, the HPS also provides a number of other peripheral devices, such as
USB, Ethernet, and a 3-D accelerometer (G-sensor). The G-sensor is described in the tutorial Using the DE0-Nano-
SoC Accelerometer with ARM, available from Intel’s FPGA University Program website. Documentation about the
other devices connected to the HPS can be found in the Intel Cyclone V Hard Processor System Technical Reference
Manual, as well as in the DE0-Nano-SoC Board User Manual.

Intel Corporation - FPGA University Program
November 2017

5

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Address 031 1

0xFFD0501C Unused Bridge reset

. . . 2

HPS2FPGA

Lightweight HPS2FPGA

FPGA2HPS

Figure 5. FPGA bridge reset register.

2.6 FPGA Components

As shown in Figure 1 many of the components in the DE0-Nano-SoC Computer are implemented inside the FPGA
in the Cyclone® V SoC chip. Several of these components are described in this section.

2.7 Nios® II Processor

The Intel Nios II processor is a 32-bit CPU that can be implemented in an Intel FPGA device. Two versions of
the Nios II processor are available, designated economy (/e) and fast (/f). The DE0-Nano-SoC Computer includes
two instances of the Nios II/f version, configured with floating-point hardware support. Instructions for using the
Nios II processors in the DE0-Nano-SoC Computer are provided in a separate document, called DE0-Nano-SoC
Computer with Nios II.

2.8 On-Chip Memory

The DE0-Nano-SoC Computer includes a 32-Kbyte memory that is implemented inside the FPGA. This memory
is organized as 8K x 32 bits, and spans addresses in the range 0xC8000000 to 0xC8007FFF. This memory is
accessible by the ARM processor as well as both Nios II processors.

2.9 Parallel Ports

There are several parallel ports implemented in the FPGA that support input, output, and bidirectional transfers of
data between the ARM A9 processor and I/O peripherals. As illustrated in Figure 6, each parallel port is assigned
a Base address and contains up to four 32-bit registers. Ports that have output capability include a writable Data
register, and ports with input capability have a readable Data register. Bidirectional parallel ports also include a
Direction register that has the same bit-width as the Data register. Each bit in the Data register can be configured
as an input by setting the corresponding bit in the Direction register to 0, or as an output by setting this bit position
to 1. The Direction register is assigned the address Base + 4.

Some of the parallel ports in the DE0-Nano-SoC Computer have registers at addresses Base + 8 and Base + C, as
indicated in Figure 6. These registers are discussed in Section 3.

6 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Address 02 14 331 30 . . .

Base

Base + 8

Base + C

Base + 4

Input or output data bits

Direction bits

Edge bits

Mask bits

Data register

Direction register

Interruptmask register

Edgecapture register

Direction bits

Figure 6. Parallel port registers in the DE0-Nano-SoC Computer.

2.9.1 Green LED Parallel Port

The green lights LED7−0 on the DE0-Nano-SoC board are driven by an output parallel port, as illustrated in Figure 7.
The port contains an 8-bit Data register, which has the address 0xFF200000. This register can be written or read
by the processor using word accesses, and the upper bits not used in the registers are ignored.

0xFF200000

LED0LED7

Address

031 78 . . .Unused Data register

Figure 7. Output parallel port for LED.

2.9.2 Slider Switch Parallel Port

The SW3−0 slider switches on the DE0-Nano-SoC board are connected to an input parallel port. As illustrated in
Figure 8, this port comprises a 4-bit read-only Data register, which is mapped to address 0xFF200040.

0xFF200040

SW0SW3

Address

Data register031 34 . . .Unused

Figure 8. Data register in the slider switch parallel port.

Intel Corporation - FPGA University Program
November 2017

7

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

2.9.3 Pushbutton Key Parallel Port

The parallel port connected to the KEY1−0 pushbutton switches on the DE0-Nano-SoC board comprises three 2-bit
registers, as shown in Figure 9. These registers have the base address 0xFF200050 and can be accessed using word
operations. The read-only Data register provides the values of the switches KEY1−0. The other two registers shown
in Figure 9, at addresses 0xFF200058 and 0xFF20005C, are discussed in Section 3.

Address 02 14 331 30 . . .

0xFF200050

0xFF200058

0xFF20005C

Unused

KEY1-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 9. Registers used in the pushbutton parallel port.

2.9.4 Expansion Parallel Port

The DE0-Nano-SoC Computer includes two bidirectional parallel ports that are connected to the JP1 and JP7 40-
pin headers on the DE0-Nano-SoC board. These parallel ports include the four 32-bit registers that were described
previously for Figure 6. The base address of the port for JP1 is 0xFF200060, and for JP7 is 0xFF200070. Figure 10
gives a diagram of the 40-pin connectors on the DE0-Nano-SoC board, and shows how the respective parallel port
Data register bits, D31−0, are assigned to the pins on the connector. The figure shows that bit D0 of the parallel port
is assigned to the pin at the top right corner of the connector, bit D1 is assigned below this, and so on. Note that
some of the pins on the 40-pin header are not usable as input/output connections, and are therefore not used by the
parallel ports. Also, only 32 of the 36 data pins that appear on each connector can be used.

2.9.5 Arduino* Expansion Parallel Port

The DE0-Nano-SoC Computer includes a bidirectional parallel port that is connected to the Arduino* Uno R3 ex-
pansion header on the DE0-Nano-SoC board. This parallel port includes the four 32-bit registers that were described
previously for Figure 6. The base address of the port is 0xFF200100. The Data register bits in this port are con-
nected to the Arduino expansion header User I/O. Thus, bit 0 in the Data register connects to the signal Arduino_IO0,
bit 1 to Arduino_IO1, and so on.

The DE0-Nano-SoC Computer also includes a one-bit output port that is connected to the Arduino Uno R3 expansion
header on the DE0-Nano-SoC board. This one-bit port has a data register that is connected to the Arduino_Reset_N
signal on the DE0-Nano-SoC board. The address of this port is 0xFF200110.

More details about the Arduino Uno R3 expansion header can be found in the DE0-Nano-SoC Board User Manual.

8 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

D0
D1

D2 D3
D4 D5
D6 D7
Unused

D10 D11
D12 D13

D14
D15

D16 D17
D18 D19

D22 D23
D24 D25
D26 D27
D28 D29
D30 D31

Unused

JP1 JP2

Pin 1 Pin 1

Pin 40 Pin 40

D8 D9

D20 D21

D0
D1

D2 D3
D4 D5
D6 D7
Unused

D10 D11
D12 D13

D14
D15

D16 D17
D18 D19

D22 D23
D24 D25
D26 D27
D28 D29
D30 D31

Unused

D8 D9

D20 D21

Figure 10. Assignment of parallel port bits to pins on JP1 and JP7.

2.9.6 Using the Parallel Ports with Assembly Language Code and C Code

The DE0-Nano-SoC Computer provides a convenient platform for experimenting with ARM A9 assembly language
code, or C code. A simple example of such code is provided in the Appendix in Listings 3 and 4. Both programs
perform the same operations, and illustrate the use of parallel ports by using either assembly language or C code.

The code in the figures displays the values of the SW switches on the LED lights. A rotating pattern is displayed
on the LEDs. This pattern is rotated to the left by using an ARM A9 rotate instruction, and a delay loop is used to
make the shifting slow enough to observe. The pattern can be changed to the values of the SW switches by pressing
a pushbutton KEY. When a pushbutton key is pressed, the program waits in a loop until the key is released.

The source code files shown in Listings 3 and 4 are distributed as part of the Intel® FPGA Monitor Program. The
files can be found under the heading sample programs, and are identified by the name Getting Started.

2.10 JTAG* Port

The JTAG* port implements a communication link between the DE0-Nano-SoC board and its host computer. This
link can be used by the Intel Quartus® Prime software to transfer FPGA programming files into the DE0-Nano-
SoC board, and by the Intel® FPGA Monitor Program, discussed in Section 7. The JTAG port also includes a UART,
which can be used to transfer character data between the host computer and programs that are executing on the ARM
A9 processor. If the Intel® FPGA Monitor Program is used on the host computer, then this character data is sent
and received through its Terminal Window. The programming interface of the JTAG UART consists of two 32-bit

Intel Corporation - FPGA University Program
November 2017

9

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

registers, as shown in Figure 11. The register mapped to address 0xFF201000 is called the Data register and the
register mapped to address 0xFF201004 is called the Control register.

Address 0731 16. . .

0xFF201000

0xFF201004

DATARAVAIL

14 8.

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 11. JTAG UART registers.

When character data from the host computer is received by the JTAG UART it is stored in a 64-character FIFO.
The number of characters currently stored in this FIFO is indicated in the field RAVAIL, which are bits 31−16 of the
Data register. If the receive FIFO overflows, then additional data is lost. When data is present in the receive FIFO,
then the value of RAVAIL will be greater than 0 and the value of bit 15, RVALID, will be 1. Reading the character
at the head of the FIFO, which is provided in bits 7−0, decrements the value of RAVAIL by one and returns this
decremented value as part of the read operation. If no data is present in the receive FIFO, then RVALID will be set
to 0 and the data in bits 7−0 is undefined.

The JTAG UART also includes a 64-character FIFO that stores data waiting to be transmitted to the host computer.
Character data is loaded into this FIFO by performing a write to bits 7−0 of the Data register in Figure 11. Note
that writing into this register has no effect on received data. The amount of space, WSPACE, currently available in
the transmit FIFO is provided in bits 31−16 of the Control register. If the transmit FIFO is full, then any characters
written to the Data register will be lost.

Bit 10 in the Control register, called AC, has the value 1 if the JTAG UART has been accessed by the host computer.
This bit can be used to check if a working connection to the host computer has been established. The AC bit can be
cleared to 0 by writing a 1 into it.

The Control register bits RE, WE, RI, and WI are described in Section 3.

2.10.1 Using the JTAG* UART with Assembly Language Code and C Code

Listings 5 and 6 give simple examples of assembly language and C code, respectively, that use the JTAG UART.
Both versions of the code perform the same function, which is to first send an ASCII string to the JTAG UART, and
then enter an endless loop. In the loop, the code reads character data that has been received by the JTAG UART, and
echoes this data back to the UART for transmission. If the program is executed by using the Intel® FPGA Monitor
Program, then any keyboard character that is typed into the Terminal Window of the Monitor Program will be echoed
back, causing the character to appear in the Terminal Window.

The source code files shown in Listings 5 and 6 are made available as part of the Intel® FPGA Monitor Program.
The files can be found under the heading sample programs, and are identified by the name JTAG UART.

10 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

2.10.2 Second JTAG* UART

The DE0-Nano-SoC Computer includes a second JTAG UART that is accessible by the ARM A9 MPCORE. This
second UART is mapped to the base address 0xFF201008, and operates as described above. The reason that two
JTAG UARTs are provided is to allow each processor in the ARM A9 MPCORE to have access to a separate UART.

2.11 Interval Timers

The DE0-Nano-SoC Computer includes a timer module implemented in the FPGA that can be used by the ARM
A9 processor. This timer can be loaded with a preset value, and then counts down to zero using a 100-MHz clock.
The programming interface for the timer includes six 16-bit registers, as illustrated in Figure 12. The 16-bit register
at address 0xFF202000 provides status information about the timer, and the register at address 0xFF202004 allows
control settings to be made. The bit fields in these registers are described below:

• TO provides a timeout signal which is set to 1 by the timer when it has reached a count value of zero. The TO
bit can be reset by writing a 0 into it.

• RUN is set to 1 by the timer whenever it is currently counting. Write operations to the status halfword do not
affect the value of the RUN bit.

• ITO is used for generating interrupts, which are discussed in section 3.

Address 01531 . . .

0xFF202000

0xFF202004

. . .

Unused RUN TO

1

START CONT ITOSTOP

16 217

Unused

Counter start value (low) 0xFF202008

Counter start value (high)0xFF20200C

Counter snapshot (low)0xFF202010

Counter snapshot (high)0xFF202014

3

Not present
(interval timer has
16-bit registers)

Status register

Control register

Figure 12. Interval timer registers.

• CONT affects the continuous operation of the timer. When the timer reaches a count value of zero it auto-
matically reloads the specified starting count value. If CONT is set to 1, then the timer will continue counting
down automatically. But if CONT = 0, then the timer will stop after it has reached a count value of 0.

• (START/STOP) is used to commence/suspend the operation of the timer by writing a 1 into the respective bit.

The two 16-bit registers at addresses 0xFF202008 and 0xFF20200C allow the period of the timer to be changed by
setting the starting count value. The default setting provided in the DE0-Nano-SoC Computer gives a timer period

Intel Corporation - FPGA University Program
November 2017

11

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

of 125 msec. To achieve this period, the starting value of the count is 100 MHz × 125 msec = 12.5× 106. It is
possible to capture a snapshot of the counter value at any time by performing a write to address 0xFF202010. This
write operation causes the current 32-bit counter value to be stored into the two 16-bit timer registers at addresses
0xFF202010 and 0xFF202014. These registers can then be read to obtain the count value.

A second interval timer, which has an identical interface to the one described above, is also available in the FPGA,
starting at the base address 0xFF202020.

2.12 Analog-to-Digital Conversion Port

The Analog-to-Digital Conversion (ADC) Port provides access to the eight-channel, 12-bit analog-to-digital con-
verter on the DE0-Nano-SoC board. As illustrated in Figure 13, the ADC port comprises eight 12-bit registers
starting at the base address 0xFF204000. The first two registers have dual purposes, acting as both data and control
registers. By default, the ADC port updates the A-to-D conversion results for all ports only when instructed to do so.
Writing to the control register at address 0xFF204000 causes this update to occur. Reading from the register at ad-
dress 0xFF204000 provides the conversion data for channel 0. Reading from the other seven registers provides the
conversion data for the corresponding channels. It is also possible to have the ADC port continually request A-to-D
conversion data for all channels. This is done by writing the value 1 to the control register at address 0xFF204004.
The R bit of each channel register in Figure 13 is used in Auto-update mode. R is set to 1 when its corresponding
channel is refreshed and set to 0 when the channel is read.

Address 031 . . .

0xFF204000

0xFF20401C

0xFF204004

Unused Channel 0 / Update

Channel 7

Channel 1 / Auto-update

... not shown

0xFF204008 Channel 2

11

Unused

Unused

Unused

16 15 12

 Unused

 Unused

 Unused

 Unused

14 . . .

R

R

R

R

Figure 13. ADC port registers.

Figure 14 shows the connector on the DE0-Nano-SoC board that is used with the ADC port. Analog signals in the
range of 0 V to the VCC 5 power-supply voltage can be connected to the pins for channels 0 to 7.

2.13 System ID

The system ID module provides a unique value that identifies the DE0-Nano-SoC Computer system. The host
computer connected to the DE0-Nano-SoC board can query the system ID module by performing a read operation
through the JTAG port. The host computer can then check the value of the returned identifier to confirm that the DE0-
Nano-SoC Computer has been properly downloaded onto the DE0-Nano-SoC board. This process allows debugging
tools on the host computer, such as the Intel® FPGA Monitor Program, to verify that the DE0-Nano-SoC board
contains the required computer system before attempting to execute code that has been compiled for this system.

12 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Gnd Ch7
Ch6 Ch5
Ch4 Ch3
Ch2 Ch1
Ch0 V

JP15

cc5

Figure 14. ADC connector.

3 Exceptions and Interrupts

The A9 processor supports eight types of exceptions, including the reset exception and the interrupt request (IRQ)
exception, as well a number of exceptions related to error conditions. All of the exception types are described in
the document Introduction to the ARM Processor, which is provided in Intel’s FPGA University Program web site.
Exception processing uses a table in memory, called the vector table. This table comprises eight words in memory
and has one entry for each type of exception. The contents of the vector table have to be set up by software, which
typically places a branch instruction in each word of the table, where the branch target is the desired exception
service routine. When an exception occurs, the A9 processor stops the execution of the program that is currently
running, and then fetches the instruction stored at the corresponding vector table entry. The vector table usually
starts at the address 0x00000000 in memory. The first entry in the table corresponds to the reset vector, and the
IRQ vector uses the seventh entry in the table, at the address 0x00000018.

The IRQ exception allows I/O peripherals to generate interrupts for the A9 processor. All interrupt signals from the
peripherals are connected to a module in the processor called the generic interrupt controller (GIC). The GIC allows
individual interrupts for each peripheral to be either enabled or disabled. When an enabled interrupt happens, the GIC
causes an IRQ exception in the A9 processor. Since the same vector table entry is used for all interrupts, the software
for the interrupt service routine must determine the source of the interrupt by querying the GIC. Each peripheral is
identified in the GIC by an interrupt identification (ID) number. Table 1 gives the assignment of interrupt IDs for
each of the I/O peripherals in the DE0-Nano-SoC Computer. The rest of this section describes the interrupt behavior
associated with the timers and parallel ports.

3.1 Interrupts from the ARM* A9* Private Timer

Figure 3, in Section 2.4.1, shows four registers that are associated with the A9 private timer. As we said in Section
2.4.1, bit F in the Interrupt status register is set to 1 when the timer reaches a count value of 0. It is possible to
generate an A9 interrupt when this occurs, by using bit I of the Control register. Setting bit I to 1 causes the timer to
send an interrupt signal to the GIC whenever the timer reaches a count value of 0. The F bit can be cleared to 0 by
writing writing a 1 into the Interrupt status register.

Intel Corporation - FPGA University Program
November 2017

13

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

I/O Peripheral Interrupt ID #

A9 Private Timer 29
HPS GPIO1 197
HPS Timer 0 199
HPS Timer 1 200
HPS Timer 2 201
HPS Timer 3 202
FPGA Interval Timer 72
FPGA Pushbutton KEYs 73
FPGA Second Interval Timer 74
FPGA JTAG 80
FPGA JP1 Expansion 83
FPGA JP7 Expansion 84
FPGA Arduino Expansion 85

Table 1. Interrupt IDs in the DE0-Nano-SoC Computer.

3.2 Interrupts from the HPS Timers

Figure 4, in Section 2.4.2, shows five registers that are associated with each HPS timer. As we said in Section 2.4.2,
when the timer reaches a count value of zero, bit F in the End-of-Interrupt register is set to 1. The value of the F bit
is also reflected in the S bit in the Interrupt status register. It is possible to generate an A9 interrupt when the F bit
becomes 1, by using the I bit of the Control register. Setting bit I to 0 unmasks the interrupt signal, and causes the
timer to send an interrupt signal to the GIC whenever the F bit is 1. After an interrupt occurs, it can be cleared by
reading the End-of-Interrupt register.

3.3 Interrupts from the FPGA Interval Timer

Figure 12, in Section 2.11, shows six registers that are associated with the interval timer. As we said in Section 2.11,
the TO bit in the Status register is set to 1 when the timer reaches a count value of 0. It is possible to generate an
interrupt when this occurs, by using the ITO bit in the Control register. Setting the ITO bit to 1 causes an interrupt
request to be sent to the GIC whenever TO becomes 1. After an interrupt occurs, it can be cleared by writing any
value into the Status register.

3.4 Interrupts from Parallel Ports

Parallel ports implemented in the FPGA in the DE0-Nano-SoC Computer were illustrated in Figure 6, which is
reproduced as Figure 15. As the figure shows, parallel ports that support interrupts include two related registers at
the addresses Base + 8 and Base + C. The Interruptmask register, which has the address Base + 8, specifies whether
or not an interrupt signal should be sent to the GIC when the data present at an input port changes value. Setting a bit
location in this register to 1 allows interrupts to be generated, while setting the bit to 0 prevents interrupts. Finally,
the parallel port may contain an Edgecapture register at address Base + C. Each bit in this register has the value 1 if

14 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

the corresponding bit location in the parallel port has changed its value from 0 to 1 since it was last read. Performing
a write operation to the Edgecapture register sets all bits in the register to 0, and clears any associated interrupts.

Address 02 14 331 30 . . .

Base

Base + 8

Base + C

Base + 4

Input or output data bits

Direction bits

Data register

Direction register

Interruptmask register

Edgecapture register Edge bits

Mask bits

Direction bits

Figure 15. Registers used for interrupts from the parallel ports.

3.4.1 Interrupts from the Pushbutton Keys

Figure 9, reproduced as Figure 16, shows the registers associated with the pushbutton parallel port. The Interrupt-
mask register allows processor interrupts to be generated when a key is pressed. Each bit in the Edgecapture register
is set to 1 by the parallel port when the corresponding key is pressed. The Nios II processor can read this register
to determine which key has been pressed, in addition to receiving an interrupt request if the corresponding bit in
the interrupt mask register is set to 1. Writing any value to the Edgecapture register deasserts the Nios II interrupt
request and sets all bits of the Edgecapture register to zero.

Address 02 14 331 30 . . .

0xFF200050

0xFF200058

0xFF20005C

Unused

KEY1-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 16. Registers used for interrupts from the pushbutton parallel port.

3.5 Interrupts from the JTAG* UART

Figure 11, reproduced as Figure 17, shows the data and Control registers of the JTAG UART. As we said in Section
2.10, RAVAIL in the Data register gives the number of characters that are stored in the receive FIFO, and WSPACE
gives the amount of unused space that is available in the transmit FIFO. The RE and WE bits in Figure 17 are used to
enable processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated
when RAVAIL for the receive FIFO, or WSPACE for the transmit FIFO, exceeds 7. Pending interrupts are indicated
in the Control register’s RI and WI bits, and can be cleared by writing or reading data to/from the JTAG UART.

Intel Corporation - FPGA University Program
November 2017

15

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Address 0731 16. . .

0xFF201000

0xFF201004

DATARAVAIL

14 8.

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 17. Interrupt bits in the JTAG UART registers.

3.6 Using Interrupts with Assembly Language Code

An example of assembly language code for the DE0-Nano-SoC Computer that uses interrupts is shown in Listing
7, which has three main parts. The beginning part of the code sets up the exception vector table. This code must
be in a special assembler section called .section, as shown. The entries in the table provide branches to the various
exception service routines; they are discussed later in this section.

When this code is executed on the DE0-Nano-SoC board it displays a rotating pattern on the LEDs. The pattern’s
rotation can be toggled through pressing the pushbutton KEYs. Different types of interrupts are used in the code. The
LEDs are controlled by interrupts from the FPGA interval timer, and the KEYs are also handled through interrupts.

The main program initializes the A9 banked stack pointer (sp) registers for interrupt (IRQ) mode and supervisor
(SVC) mode, because these are the processor modes that are used in the program. The code then calls subroutines
to initialize the HPS timer, FPGA interval timer, and FPGA pushbutton KEYs. Finally, the code initializes the HPS
GPIO1 port, enables IRQ interrupts in the A9 processor, and then enters an infinite loop. The loop code turns on and
off a green light whenever the global variable named tick is set to 1. This variable is set to 1 by the exception service
routine for the HPS timer, which is described later in this section.

Following are the subroutines used to initialize the timers and pushbutton KEYs. The CONFIG_HPS_TIMER
routine sets up the HPS timer 0 so that it will produce an interrupt every one second. Since this timer uses a 100
MHz clock, the timer load register is initialized to the value 100×106. The CONFIG_INTERVAL_TIMER routine
configures the FPGA interval timer to produce interrupts every 50 msec. Since this timer uses a 100 MHz clock,
the required starting count value is 5×106. The CONFIG_KEYS routine sets up the FPGA KEYs parallel port to
produce an interrupt when any KEY is pressed.

The last portion of the code shows the global data used by the program. It includes the tick variable that was discussed
for the code earlier, and other variables. The pattern variable holds the bit-pattern that is written, the key_pressed
variable indicates which FPGA KEY has been recently pressed, and the shift_dir variable specifies the direction of
shifting for the HEX displays.

Also included in part c of Listing 7 is the subroutine that initializes the GIC. This code performs the minimum-
required steps needed to configure the three interrupts used in the program, by writing to the processor targets
(ICDIPTRn) registers in the GIC, and the set enable (ICDISERn) registers. For the HPS timer, the registers used
have addresses 0xFFFED8C4 and 0xFFFED118, as shown in the listing. For the FPGA interval timer and KEYs,
the register addresses are 0xFFFED848 and 0xFFFED108. Instructions for calculating these addresses, and de-
termining the bit patterns to write into them can be found in the tutorial Using the Generic Interrupt Controller,

16 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

available in Intel’s FPGA University Program website. The last part of the code in this section enables the CPU
Interface and Distributor in the GIC.

The exception service routines for the main program in Listing 7 are given in Listing 8. The first part of the listing
gives the IRQ exception handler. This routine first reads from the interrupt acknowledge register in the GIC to
determine the interrupt ID of the peripheral that caused the interrupt. The code then checks which of the three
possible sources of interrupt has occurred, and calls the corresponding interrupt service routine for the HPS timer,
FPGA interval timer, or FPGA KEY parallel port. These interrupt service routine are shown in Listings 9 to 10.

Finally, the exception handler in Listing 8 writes to the end-of-interrupt register in the GIC to clear the interrupt, and
then returns to the main program by using the instruction “SUBS PC, LR, #4”.

The latter part of Listing 8 shows handlers for exceptions that correspond to the reset exception, various types
of error conditions, and the FIQ interrupt. The reset handler shows a branch to the start of the main program in
Listing 7. This handler is just an indicator of the result of performing a reset of the A9 processor—the actual reset
process involves executing code from a special boot ROM on the processor, and then executing a program called
the pre-loader before actually starting the main program. More information about the reset process for the A9
processor can be found in the document “Using the Pre-loader Software for the A9 Processor,” which is available
from Intel’s FPGA University Program website. The other handlers in the latter part of Listing 8, which are just
loops that branch to themselves, are intended to serve as placeholders for code that would handle the corresponding
exceptions. More information about each of these types of exceptions can be found in the document Introduction to
the ARM Processor, also available in Intel’s FPGA University Program web site.

3.7 Using Interrupts with C Code

An example of C code for the DE0-Nano-SoC Computer that uses interrupts is shown in Figure 12. This code
performs exactly the same operations as the code described in Listing 7.

Before it call subroutines to configure the generic interrupt controller (GIC), timers, and pushbutton KEY port, the
main program first initializes the IRQ mode stack pointer by calling the routine set_A9_IRQ_stack(). The code for
this routine uses in-line assembly language instructions, as shown in Part b of the listing. This step is necessary
because the C compiler generates code to set only the supervisor mode stack, which is used for running the main
program, but the compiler does not produce code for setting the IRQ mode stack. To enable IRQ interrupts in the A9
processor the main program uses the in-line assembly code shown in the subroutine called enable_A9_interrupts().

The exception handlers for the main program in Listing 12 are given in Listing 13. These routines have unique names
that are meaningful to the C compiler and linker tools, and they are declared with the special type of __attribute__
called interrupt. These mechanisms cause the C compiler and linker to use the addresses of these routines as the
contents of the exception vector table.

The function with the name __cs3_isr_irq is the IRQ exception handler. As discussed for the assembly language
code in Listing 8 this routine first reads from the interrupt acknowledge register in the GIC to determine the interrupt
ID of the peripheral that caused the interrupt, and then calls the corresponding interrupt service routine for either
the HPS timer, FPGA interval timer, or FPGA KEY parallel port. These interrupt service routines are shown in
Listings 14 to 15.

Intel Corporation - FPGA University Program
November 2017

17

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Listing 13 also shows handlers for exceptions that correspond to the various types of error conditions and the FIQ
interrupt. These handlers are just loops that are meant to serve as place-holders for code that would handle the
corresponding exceptions.

The source code files shown in Listing 7 to Listing 16 are distributed as part of the Intel® FPGA Monitor Program.
The files can be found under the heading sample programs, and are identified by the name Interrupt Example.

4 Modifying the DE0-Nano-SoC Computer

It is possible to modify the DE0-Nano-SoC Computer by using Intel’s Quartus® Prime software and Qsys tool.
Tutorials that introduce this software are provided in the University Program section of Intel’s web site. To modify
the system it is first necessary to make an editable copy of the DE0-Nano-SoC Computer. The files for this system
are installed as part of the Monitor Program installation. Locate these files, copy them to a working directory, and
then use the Quartus Prime and Qsys software to make any desired changes.

Table 2 lists the names of the Qsys IP cores that are used in this system. When the DE0-Nano-SoC Computer design
files are opened in the Quartus Prime software, these cores can be examined using the Qsys System Integration tool.
Each core has a number of settings that are selectable in the Qsys System Integration tool, and includes a datasheet
that provides detailed documentation.

The steps needed to modify the system are:

1. Install the University Program IP Cores from Intel’s FPGA University Program web site

2. Copy the design source files for the DE0-Nano-SoC Computer from the University Program web site. These
files can be found in the Design Examples section of the web site

3. Open the DE0-Nano-SoC_Computer.qpf project in the Quartus Prime software

4. Open the Qsys System Integration tool in the Quartus Prime software, and modify the system as desired

5. Generate the modified system by using the Qsys System Integration tool

6. It may be necessary to modify the Verilog or VHDL code in the top-level module, DE0-Nano-SoC_Computer.v/vhd,
if any I/O peripherals have been added or removed from the system

7. Compile the project in the Quartus Prime software

8. Download the modified system into the DE0-Nano-SoC board

The DE0-Nano-SoC Computer includes a Nios II/f processor. When using the Quartus Prime Web Edition, com-
piling a design with a Nios II/s or Nios II/f processor will produce a time-limited SOF file. As a result, the board
must remain connected to the host computer, and the design cannot be set as the default configuration, as discussed
in Section 5. Designs using only Nios II/e processors and designs compiled using the Quartus Prime Subscription
Edition do not have this restriction.

18 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

I/O Peripheral Qsys Core
SDRAM SDRAM Controller
On-chip Memory On-Chip Memory (RAM or ROM)
SD Card SD Card Interface
Green LED parallel port Parallel Port
Expansion parallel ports Parallel Port
Slider switch parallel port Parallel Port
Pushbutton parallel port Parallel Port
JTAG port JTAG UART
Interval timer Interval timer
Analog-to-Digital Converter ADC Controller
System ID System ID Peripheral

Table 2. Qsys cores used in the DE0-Nano-SoC Computer.

5 Making the System the Default Configuration

The DE0-Nano-SoC Computer can be loaded into the nonvolatile FPGA configuration memory on the DE0-Nano-
SoC board, so that it becomes the default system whenever the board is powered on. Instructions for configuring the
DE0-Nano-SoC board in this manner can be found in the tutorial Introduction to the Quartus Prime Software, which
is available from Intel’s FPGA University Program.

Intel Corporation - FPGA University Program
November 2017

19

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

6 Memory Layout

Table 3 summarizes the memory map used in the DE0-Nano-SoC Computer.

Base Address End Address I/O Peripheral

0x00000000 0x3FFFFFFF DDR3 Memory
0xFFFF0000 0xFFFFFFFF A9 On-chip Memory
0xC8000000 0xC8007FFF FPGA On-chip Memory
0xFF200000 0xFF20000F Green LEDs
0xFF200040 0xFF20004F Slider Switches
0xFF200050 0xFF20005F Pushbutton KEYs
0xFF200060 0xFF20006F JP1 Expansion
0xFF200070 0xFF20007F JP7 Expansion
0xFF200100 0xFF20010F Arduino Expansion
0xFF200110 0xFF20011F Arduino Reset
0xFF201000 0xFF201007 JTAG UART
0xFF201008 0xFF20100F Second JTAG UART
0xFF202000 0xFF20201F Interval Timer
0xFF202020 0xFF20202F Second Interval Timer
0xFF204000 0xFF20401F ADC
0xFF709000 0xFF709063 HPS GPIO1
0xFFC04000 0xFFC040FC HPS I2C0
0xFFC08000 0xFFC08013 HPS Timer0
0xFFC09000 0xFFC09013 HPS Timer1
0xFFD00000 0xFFD00013 HPS Timer2
0xFFD01000 0xFFD01013 HPS Timer3
0xFFD0501C 0xFFD0501F FPGA Bridge
0xFFFEC100 0xFFFEC1FC GIC CPU Interface
0xFFFED000 0xFFFEDFFC GIC Distributor Interface
0xFFFEC600 0xFFFEC60F ARM A9 Private Timer

Table 3. Memory layout used in the DE0-Nano-SoC Computer.

20 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

7 Intel® FPGA Monitor Program Integration

As we mentioned earlier, the DE0-Nano-SoC Computer system, and the sample programs described in this docu-
ment, are made available as part of the Intel® FPGA Monitor Program. Figures 18 to 21 show a series of windows
that are used in the Monitor Program to create a new project. In the first screen, shown in Figure 18, the user specifies
a file system folder where the project will be stored, gives the project a name, and specifies the type of processor
that is being used. Pressing Next opens the window in Figure 19. Here, the user can select the DE0-Nano-SoC
Computer as a pre-designed system. The Monitor Program then fills in the relevant information in the System de-
tails box, which includes the appropriate system info and fpga configuration files, and preloader. The first of these
files specifies to the Monitor Program information about the components that are available in the DE0-Nano-SoC
Computer, such as the type of processor and memory components, and the address map. The second file is an FPGA
programming bitstream for the DE0-Nano-SoC Computer, which can downloaded by the Monitor Program into the
DE0-Nano-SoC board. Any system which contains a Hard Processor System (HPS) component must also specify
the preloader to be run immediately following the circuit being downloaded. This preloader is used to configure the
components within the HPS with the setting required for the specific board.

Figure 18. Specifying the project folder and project name.

Intel Corporation - FPGA University Program
November 2017

21

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Pressing Next again opens the window in Figure 20. Here the user selects the type of program that will be used,
such as Assembly language, or C. Then, the check box shown in the figure can be used to display the list of sample
programs for the DE0-Nano-SoC Computer that are described in this document. When a sample program is selected
in this list, its source files, and other settings, can be copied into the project folder in subsequent screens of the
Monitor Program.

Figure 21 gives the final screen that is used to create a new project in the Monitor Program. This screen shows the
default addresses of compiler and linker sections that will be used for the assembly language or C program associ-
ated with the Monitor Program project. In the figure, the drop-down menu called Linker Section Presets has been
set to Exceptions. With this setting the Monitor Program uses specific compiler and linker sections for the selected
processor. For the Nios II processor, these sections are for reset and exceptions code, and another section for the
main program, called .text. For the A9 processor, it has a section for the exception table, called .vectors, and another
section for the main program, called .text. It also shows the initial value used to set the main stack pointer for C
programs, which is the starting address of the .stack section.

Figure 19. Specifying the DE0-Nano-SoC Computer system.

22 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Figure 20. Selecting sample programs.

Figure 21. Setting offsets for .text and .data.

Intel Corporation - FPGA University Program
November 2017

23

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

8 Appendix

This section contains all of the source code files mentioned in the document.

8.1 Timers

.include "address_map_arm.s"

.equ bit_24_pattern, 0x01000000
/* This program provides a simple example of code for the ARM A9. The program

* performs the following:

* 1. starts the ARM A9 private timer

* 2. loops forever, toggling the HPS green light LEDG when the timer expires

*/
.text
.global _start
_start:

LDR R0, =HPS_GPIO1_BASE // GPIO1 base address
LDR R1, =MPCORE_PRIV_TIMER // MPCore private timer base address

LDR R2, =bit_24_pattern // value to turn on the HPS green light LEDG
STR R2, [R0, #0x4] // write to the data direction register to

// set bit 24 (LEDG) of GPIO1 to be an
output

LDR R3, =200000000 // timeout = 1/(200 MHz) x 200x10^6 = 1 sec
STR R3, [R1] // write to timer load register
MOV R3, #0b011 // set bits: mode = 1 (auto), enable = 1
STR R3, [R1, #0x8] // write to timer control register

LOOP:
STR R2, [R0] // turn on/off LEDG

WAIT:
LDR R3, [R1, #0xC] // read timer status
CMP R3, #0
BEQ WAIT // wait for timer to expire

STR R3, [R1, #0xC] // reset timer flag bit
EOR R2, R2, #bit_24_pattern // toggle LEDG value
B LOOP

.end

Listing 1. An example of assembly language code that uses a timer.

24 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

#include "address_map_arm.h"

#define bit_24_pattern 0x01000000

/* This program provides a simple example of code for the ARM A9. The

* program performs the following:

* 1. starts the ARM A9 private timer

* 2. loops indefinitely, toggling the green light LEDG when the timer expires

*/
int main(void)
{

/* Declare volatile pointers to I/O registers (volatile means that the

* locations will not be cached, even in registers) */
volatile int * HPS_GPIO1_ptr = (int *)HPS_GPIO1_BASE;
volatile int * MPcore_private_timer_ptr = (int *)MPCORE_PRIV_TIMER;

int HPS_LEDG = bit_24_pattern; // value to turn on the HPS green light LEDG
int counter = 200000000; // timeout = 1/(200 MHz) x 200x10^6 = 1 sec

*(HPS_GPIO1_ptr + 1) =
bit_24_pattern; // write to the data direction register to set

// bit 24 (LEDG) of GPIO1 to be an output

*(MPcore_private_timer_ptr) = counter; // write to timer load register

*(MPcore_private_timer_ptr + 2) = 0b011; // mode = 1 (auto), enable = 1

while (1)
{

*HPS_GPIO1_ptr = HPS_LEDG; // turn on/off LEDG
while (*(MPcore_private_timer_ptr + 3) == 0)

; // wait for timer to expire

*(MPcore_private_timer_ptr + 3) = 1; // reset timer flag bit
HPS_LEDG ^= bit_24_pattern; // toggle bit that controls LEDG

}
}

Listing 2. An example of C code that uses a timer.

Intel Corporation - FPGA University Program
November 2017

25

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

8.2 Parallel Ports

.include "address_map_arm.s"

/**
* This program demonstrates use of parallel ports in the Computer System

*
* It performs the following:

* 1. displays a rotating pattern on the LEDs

* 2. if a KEY is pressed, uses SW switches as the pattern

**/
.text /* executable code follows */
.global _start
_start:

MOV R0, #31 // used to rotate a bit pattern: 31 positions to the
// right is equivalent to 1 position to the left

LDR R1, =LED_BASE // base address of LED lights
LDR R2, =SW_BASE // base address of SW switches
LDR R3, =KEY_BASE // base address of KEY pushbuttons
LDR R4, LED_bits

DO_DISPLAY:
LDR R5, [R2] // load SW switches

LDR R6, [R3] // load pushbutton keys
CMP R6, #0 // check if any key is presssed
BEQ NO_BUTTON

MOV R4, R5 // copy SW switch values onto LED displays
ROR R5, R5, #8 // the SW values are copied into the upper three

// bytes of the pattern register
ORR R4, R4, R5 // needed to make pattern consistent as all 32-bits

// of a register are rotated
ROR R5, R5, #8 // but only the lowest 8-bits are displayed on LEDs
ORR R4, R4, R5
ROR R5, R5, #8
ORR R4, R4, R5

WAIT:
LDR R6, [R3] // load pushbuttons
CMP R6, #0
BNE WAIT // wait for button release

NO_BUTTON:
STR R4, [R1] // store pattern to the LED displays
ROR R4, R0 // rotate the displayed pattern to the left

LDR R6, =50000000 // delay counter
DELAY:

SUBS R6, R6, #1
BNE DELAY

26 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

B DO_DISPLAY

LED_bits:
.word 0x0F0F0F0F

.end

Listing 3. An example of ARM A9 assembly language code that uses parallel ports.

Intel Corporation - FPGA University Program
November 2017

27

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

#include "address_map_arm.h"
/* This program demonstrates use of parallel ports in the Computer System

*
* It performs the following:

* 1. displays a rotating pattern on the green LED

* 2. if a KEY is pressed, uses the SW switches as the pattern

*/
int main(void) {

/* Declare volatile pointers to I/O registers (volatile means that IO load

* and store instructions will be used to access these pointer locations,

* instead of regular memory loads and stores)

*/
volatile int * LED_ptr = (int *)LED_BASE; // LED address
volatile int * SW_switch_ptr = (int *)SW_BASE; // SW slider switch address
volatile int * KEY_ptr = (int *)KEY_BASE; // pushbutton KEY address

int LED_bits = 0x0F0F0F0F; // pattern for LED lights
int SW_value, KEY_value;
volatile int

delay_count; // volatile so the C compiler doesn’t remove the loop

while (1) {
SW_value = *(SW_switch_ptr); // read the SW slider (DIP) switch values

KEY_value = *(KEY_ptr); // read the pushbutton KEY values
if (KEY_value != 0) // check if any KEY was pressed
{

/* set pattern using SW values */
LED_bits = SW_value | (SW_value << 8) | (SW_value << 16) |

(SW_value << 24);
while (*KEY_ptr)

; // wait for pushbutton KEY release
}

*(LED_ptr) = LED_bits; // light up the LEDs

/* rotate the pattern shown on the LEDs */
if (LED_bits & 0x80000000)

LED_bits = (LED_bits << 1) | 1;
else

LED_bits = LED_bits << 1;

for (delay_count = 350000; delay_count != 0; --delay_count)
; // delay loop

}
}

Listing 4. An example of C code that uses parallel ports.

28 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

8.3 JTAG* UART

.include "address_map_arm.s"
/**
* This program demonstrates use of the JTAG UART port in the DE1-SoC Computer

* It performs the following:

* 1. sends an example text string to the JTAG UART

* 2. reads and echos character data from/to the JTAG UART

**/
.text /* executable code follows */
.global _start
_start:
/* set up stack pointer */

MOV SP, #DDR_END - 3 // highest memory word address

/* print a text string */
LDR R4, =TEXT_STRING

LOOP:
LDRB R0, [R4]
CMP R0, #0
BEQ CONT // string is null-terminated

BL PUT_JTAG // send the character in R0 to UART
ADD R4, R4, #1
B LOOP

/* read and echo characters */
CONT:

BL GET_JTAG // read from the JTAG UART
CMP R0, #0 // check if a character was read
BEQ CONT
BL PUT_JTAG
B CONT

/**
* Subroutine to send a character to the JTAG UART

* R0 = character to send

**/
.global PUT_JTAG
PUT_JTAG:

LDR R1, =JTAG_UART_BASE // JTAG UART base address
LDR R2, [R1, #4] // read the JTAG UART control register
LDR R3, =0xFFFF0000
ANDS R2, R2, R3 // check for write space
BEQ END_PUT // if no space, ignore the character
STR R0, [R1] // send the character

END_PUT:
BX LR

Listing 5. An example of assembly language code that uses the JTAG UART (Part a).

Intel Corporation - FPGA University Program
November 2017

29

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

/**
* Subroutine to get a character from the JTAG UART

* returns the character read in R0

**/
.global GET_JTAG
GET_JTAG:

LDR R1, =JTAG_UART_BASE // JTAG UART base address
LDR R0, [R1] // read the JTAG UART data register
ANDS R2, R0, #0x8000 // check if there is new data
BEQ RET_NULL // if no data, return 0
AND R0, R0, #0x00FF // return the character
B END_GET

RET_NULL:
MOV R0, #0

END_GET:
BX LR

Listing 5. An example of assembly language code that uses the JTAG UART (Part b).

30 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

#include "JTAG_UART.h"

/***
* Subroutine to send a character to the JTAG UART

**/
void put_jtag(volatile int * JTAG_UART_ptr, char c) {

int control;
control = *(JTAG_UART_ptr + 1); // read the JTAG_UART control register
if (control & 0xFFFF0000) // if space, echo character, else ignore

*(JTAG_UART_ptr) = c;
}

/***
* Subroutine to read a character from the JTAG UART

* Returns \0 if no character, otherwise returns the character

**/
char get_jtag(volatile int * JTAG_UART_ptr) {

int data;
data = *(JTAG_UART_ptr); // read the JTAG_UART data register
if (data & 0x00008000) // check RVALID to see if there is new data

return ((char)data & 0xFF);
else

return (’\0’);
}

Listing 6. An example of C code that uses the JTAG UART (Part a).

Intel Corporation - FPGA University Program
November 2017

31

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

#include "JTAG_UART.h"
#include "address_map_arm.h"

/***
* This program demonstrates use of the JTAG UART port

*
* It performs the following:

* 1. sends a text string to the JTAG UART

* 2. reads character data from the JTAG UART

* 3. echos the character data back to the JTAG UART

**/
int main(void) {

/* Declare volatile pointers to I/O registers (volatile means that IO load
and store instructions will be used to access these pointer locations,
instead of regular memory loads and stores) */

volatile int * JTAG_UART_ptr = (int *)JTAG_UART_BASE; // JTAG UART address

char text_string[] = "\nJTAG UART example code\n> \0";
char *str, c;

/* print a text string */
for (str = text_string; *str != 0; ++str)

put_jtag(JTAG_UART_ptr, *str);

/* read and echo characters */
while (1) {

c = get_jtag(JTAG_UART_ptr);
if (c != ’\0’)

put_jtag(JTAG_UART_ptr, c);
}

}

Listing 6. An example of C code that uses the JTAG UART (Part b).

32 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

8.4 Interrupts

/***
* Initialize the exception vector table

**/
.section .vectors, "ax"

B _start // reset vector
B SERVICE_UND // undefined instruction vector
B SERVICE_SVC // software interrrupt vector
B SERVICE_ABT_INST // aborted prefetch vector
B SERVICE_ABT_DATA // aborted data vector

.word 0 // unused vector
B SERVICE_IRQ // IRQ interrupt vector
B SERVICE_FIQ // FIQ interrupt vector

Listing 7. An example of assembly language code that uses interrupts (Part a).

/***
* This program demonstrates use of interrupts with assembly code. It first starts

* two timers: an HPS timer, and the Altera interval timer (in the FPGA). The

* program responds to interrupts from these timers in addition to the pushbutton

* KEYs in the FPGA.

*
* The interrupt service routine for the HPS timer causes the main program to flash

* the green light connected to the HPS GPIO1 port.

*
* The interrupt service routine for the interval timer displays a pattern on

* the LED lights, and shifts this pattern either left or right. The shifting

* direction is set in the pushbutton interrupt service routine; it is reversed

* each time a KEY is pressed

**/
.text
.global _start
_start:
/* Set up stack pointers for IRQ and SVC processor modes */

MOV R1, #INT_DISABLE | IRQ_MODE
MSR CPSR_c, R1 // change to IRQ mode
LDR SP, =A9_ONCHIP_END - 3 // set IRQ stack to top of A9 onchip

// memory

/* Change to SVC (supervisor) mode with interrupts disabled */
MOV R1, #INT_DISABLE | SVC_MODE
MSR CPSR_c, R1 // change to supervisor mode
LDR SP, =DDR_END - 3 // set SVC stack to top of DDR3 memory

BL CONFIG_GIC // configure the ARM generic interrupt
// controller

BL CONFIG_HPS_TIMER // configure the HPS timer
BL CONFIG_INTERVAL_TIMER // configure the Altera interval timer
BL CONFIG_KEYS // configure the pushbutton KEYs

Intel Corporation - FPGA University Program
November 2017

33

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

/* initialize the GPIO1 port */
LDR R0, =HPS_GPIO1_BASE // GPIO1 base address
MOV R4, #0x01000000 // value to turn on the HPS green light

// LEDG
STR R4, [R0, #0x4] // write to the data direction register

// to set
// bit 24 (LEDG) to be an output

/* enable IRQ interrupts in the processor */
MOV R1, #INT_ENABLE | SVC_MODE // IRQ unmasked, MODE = SVC
MSR CPSR_c, R1
LDR R3, =TICK // global variable

LOOP:
LDR R5, [R3] // read tick variable
CMP R5, #0 // HPS timer expired?
BEQ LOOP
MOV R5, #0
STR R5, [R3] // reset tick variable
STR R4, [R0] // turn on/off LEDG
EOR R4, R4, #0x01000000 // toggle bit that controls LEDG
B LOOP

/* Configure the HPS timer to create interrupts at one-second intervals */
CONFIG_HPS_TIMER:
/* initialize the HPS timer */

LDR R0, =HPS_TIMER0_BASE // base address
MOV R1, #0 // used to stop the timer
STR R1, [R0, #0x8] // write to timer control register
LDR R1, =100000000 // period = 1/(100 MHz) x (100 x 10^6)

// = 1 sec
STR R1, [R0] // write to timer load register
MOV R1, #0b011 // int mask = 0, mode = 1, enable = 1
STR R1, [R0, #0x8] // write to timer control register
BX LR

/* Configure the Altera interval timer to create interrupts at 50-msec intervals */
CONFIG_INTERVAL_TIMER:

LDR R0, =TIMER_BASE
/* set the interval timer period for scrolling the LED displays */

LDR R1, =5000000 // 1/(100 MHz) x 5x10^6 = 50 msec
STR R1, [R0, #0x8] // store the low half word of counter

// start value
LSR R1, R1, #16
STR R1, [R0, #0xC] // high half word of counter start value

// start the interval timer, enable its
interrupts

MOV R1, #0x7 // START = 1, CONT = 1, ITO = 1
STR R1, [R0, #0x4]
BX LR

34 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

/* Configure the pushbutton KEYS to generate interrupts */
CONFIG_KEYS:

// write to the pushbutton port
interrupt mask register

LDR R0, =KEY_BASE // pushbutton key base address
MOV R1, #0x3 // set interrupt mask bits
STR R1, [R0, #0x8] // interrupt mask register is (base + 8)
BX LR

/* Global variables */
.global TICK
TICK:
.word 0x0 // used by HPS timer
.global PATTERN
PATTERN:
.word 0x0F0F0F0F // pattern to show on the LED lights
.global KEY_DIR
KEY_DIR:
.word 0
.end

Listing 7. An example of assembly language code that uses interrupts (Part b).

/*
* Configure the Generic Interrupt Controller (GIC)

*/
.global CONFIG_GIC
CONFIG_GIC:
/* configure the HPS timer interrupt */

LDR R0, =0xFFFED8C4 // ICDIPTRn: processor targets register
LDR R1, =0x01000000 // set target to cpu0
STR R1, [R0]

LDR R0, =0xFFFED118 // ICDISERn: set enable register
LDR R1, =0x00000080 // set interrupt enable
STR R1, [R0]

/* configure the FPGA IRQ0 (interval timer) and IRQ1 (KEYs) interrupts */
LDR R0, =0xFFFED848 // ICDIPTRn: processor targets register
LDR R1, =0x00000101 // set targets to cpu0
STR R1, [R0]

LDR R0, =0xFFFED108 // ICDISERn: set enable register
LDR R1, =0x00000300 // set interrupt enable
STR R1, [R0]

/* configure the GIC CPU interface */
LDR R0, =MPCORE_GIC_CPUIF // base address of CPU interface

/* Set Interrupt Priority Mask Register (ICCPMR) */

Intel Corporation - FPGA University Program
November 2017

35

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

LDR R1, =0xFFFF // 0xFFFF enables interrupts of all
// priorities levels

STR R1, [R0, #ICCPMR]
/* Set the enable bit in the CPU Interface Control Register (ICCICR). This bit

* allows interrupts to be forwarded to the CPU(s) */
MOV R1, #ENABLE
STR R1, [R0, #ICCICR]

/* Set the enable bit in the Distributor Control Register (ICDDCR). This bit

* allows the distributor to forward interrupts to the CPU interface(s) */
LDR R0, =MPCORE_GIC_DIST
STR R1, [R0, #ICDDCR]
BX LR

Listing 7. An example of assembly language code that uses interrupts (Part c).

36 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

/*--- IRQ ---*/
.global SERVICE_IRQ
SERVICE_IRQ:

PUSH {R0-R7, LR}

/* Read the ICCIAR from the CPU interface */
LDR R4, =MPCORE_GIC_CPUIF
LDR R5, [R4, #ICCIAR] // read the interrupt ID

HPS_TIMER_CHECK:
CMP R5, #HPS_TIMER0_IRQ // check for HPS timer interrupt
BNE INTERVAL_TIMER_CHECK

BL HPS_TIMER_ISR
B EXIT_IRQ

INTERVAL_TIMER_CHECK:
CMP R5, #INTERVAL_TIMER_IRQ // check for FPGA timer interrupt
BNE KEYS_CHECK

BL TIMER_ISR
B EXIT_IRQ

KEYS_CHECK:
CMP R5, #KEYS_IRQ

UNEXPECTED:
BNE UNEXPECTED // if not recognized, stop here

BL KEY_ISR
EXIT_IRQ:
/* Write to the End of Interrupt Register (ICCEOIR) */

STR R5, [R4, #ICCEOIR]

POP {R0-R7, LR}
SUBS PC, LR, #4

/*--- Undefined instructions --*/
.global SERVICE_UND
SERVICE_UND:

B SERVICE_UND

/*--- Software interrupts ---*/
.global SERVICE_SVC
SERVICE_SVC:

B SERVICE_SVC

/*--- Aborted data reads --*/
.global SERVICE_ABT_DATA
SERVICE_ABT_DATA:

B SERVICE_ABT_DATA

Intel Corporation - FPGA University Program
November 2017

37

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

/*--- Aborted instruction fetch ---*/
.global SERVICE_ABT_INST
SERVICE_ABT_INST:

B SERVICE_ABT_INST

/*--- FIQ ---*/
.global SERVICE_FIQ
SERVICE_FIQ:

B SERVICE_FIQ

Listing 8. Exception handlers assembly language code.

38 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

.include "address_map_arm.s"

.extern TICK

/**
* HPS timer0 interrupt service routine

*
* This code increments the TICK global variable, and clears the interrupt

***/

.global HPS_TIMER_ISR
HPS_TIMER_ISR:

LDR R0, =HPS_TIMER0_BASE // base address of timer
LDR R1, =TICK // used by main program

LDR R2, [R1]
ADD R2, R2, #1
STR R2, [R1] // ++tick

LDR R0, [R0, #0xC] // read timer end of interrupt register to
// clear the interrupt

BX LR
.end

Listing 9. Interrupt service routine for the HPS timer.

Intel Corporation - FPGA University Program
November 2017

39

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

.include "address_map_arm.s"

.include "defines.s"
/* externally defined variables */
.extern KEY_DIR
.extern PATTERN

/***
* Interval timer interrupt service routine

*
* Shifts a PATTERN being displayed on the LED lights. The shift direction

* is determined by the external variable KEY_PRESSED.

*
**/

.global TIMER_ISR
TIMER_ISR:

PUSH {R4-R7}
LDR R1, =TIMER_BASE // interval timer base address
MOVS R0, #0
STR R0, [R1] // clear the interrupt

LDR R1, =LED_BASE // LED base address
LDR R2, =PATTERN // set up a pointer to the pattern for LED displays
LDR R7, =KEY_DIR // set up a pointer to the shift direction variable

LDR R6, [R2] // load pattern for LED displays
STR R6, [R1] // store to LEDs

SHIFT:
LDR R5, [R7] // get shift direction
CMP R5, #RIGHT
BNE SHIFT_L
MOVS R5, #1 // used to rotate right by 1 position
RORS R6, R5 // rotate right for KEY1
B END_TIMER_ISR

SHIFT_L:
MOVS R5, #31 // used to rotate left by 1 position
RORS R6, R5

END_TIMER_ISR:
STR R6, [R2] // store LED display pattern
POP {R4-R7}
BX LR

.end

Listing 10. Interrupt service routine for the interval timer.

40 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

.include "address_map_arm.s"

.include "defines.s"

.extern KEY_DIR /* externally defined variable */
/***
* Pushbutton KEY - Interrupt Service Routine

*
* This routine toggles the KEY_DIR variable from 0 <-> 1

**/
.global KEY_ISR
KEY_ISR:

LDR R0, =KEY_BASE // base address of pushbutton KEY parallel port
/* KEY[1] is the only key configured for interrupts, so just clear it. */

LDR R1, [R0, #0xC] // read edge capture register
STR R1, [R0, #0xC] // clear the interrupt

LDR R1, =KEY_DIR // set up a pointer to the shift direction variable
LDR R2, [R1] // load value of shift direction variable
EOR R2, R2, #1 // toggle the shift direction
STR R2, [R1]

END_KEY_ISR:
BX LR

.end

Listing 11. Interrupt service routine for the pushbutton KEYs.

Intel Corporation - FPGA University Program
November 2017

41

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

void set_A9_IRQ_stack(void);
void config_GIC(void);
void config_HPS_timer(void);
void config_HPS_GPIO1(void);
void config_interval_timer(void);
void config_KEYs(void);
void enable_A9_interrupts(void);
/* key_dir and pattern are written by interrupt service routines; we have to

* declare these as volatile to avoid the compiler caching their values in

* registers */
volatile int tick = 0; // set to 1 every time the HPS timer expires
volatile int key_dir = 0;
volatile int pattern = 0x0F0F0F0F; // pattern for LED lights

/* **
* This program demonstrates use of interrupts with C code. It first starts

* two timers: an HPS timer, and the FPGA interval timer. The program responds

* to interrupts from these timers in addition to the pushbutton KEYs in the

* FPGA.

*
* The interrupt service routine for the HPS timer causes the main program to

* flash the green light connected to the HPS GPIO1 port.

*
* The interrupt service routine for the interval timer displays a pattern on

* the LED lights, and shifts this pattern either left or right. The shifting

* direction is reversed when KEY[1] is pressed

**/
int main(void)
{

volatile int * HPS_GPIO1_ptr = (int *)HPS_GPIO1_BASE; // GPIO1 base address
volatile int HPS_timer_LEDG =

0x01000000; // value to turn on the HPS green light LEDG

set_A9_IRQ_stack(); // initialize the stack pointer for IRQ mode
config_GIC(); // configure the general interrupt controller
config_HPS_timer(); // configure the HPS timer
config_HPS_GPIO1(); // configure the HPS GPIO1 interface
config_interval_timer(); // configure Altera interval timer to generate

// interrupts
config_KEYs(); // configure pushbutton KEYs to generate interrupts

enable_A9_interrupts(); // enable interrupts

while (1)
{

if (tick)
{

tick = 0;

*HPS_GPIO1_ptr = HPS_timer_LEDG; // turn on/off the green light LEDG
HPS_timer_LEDG ^= 0x01000000; // toggle the bit that controls LEDG

}

42 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

}
}

/* setup HPS timer */
void config_HPS_timer()
{

volatile int * HPS_timer_ptr = (int *)HPS_TIMER0_BASE; // timer base address

*(HPS_timer_ptr + 0x2) = 0; // write to control register to stop timer
/* set the timer period */
int counter = 100000000; // period = 1/(100 MHz) x (100 x 10^6) = 1 sec

*(HPS_timer_ptr) = counter; // write to timer load register

/* write to control register to start timer, with interrupts */

*(HPS_timer_ptr + 2) = 0b011; // int mask = 0, mode = 1, enable = 1
}

/* setup HPS GPIO1. The GPIO1 port has one green light (LEDG) and one pushbutton

* KEY connected for the DE1-SoC Computer. The KEY is connected to GPIO1[25],

* and is not used here. The green LED is connected to GPIO1[24]. */
void config_HPS_GPIO1()
{

volatile int * HPS_GPIO1_ptr = (int *)HPS_GPIO1_BASE; // GPIO1 base address

*(HPS_GPIO1_ptr + 0x1) =
0x01000000; // write to the data direction register to set

// bit 24 (LEDG) to be an output
// Other possible actions include setting up GPIO1 to use the KEY, including
// setting the debounce option and causing the KEY to generate an interrupt.
// We do not use the KEY in this example.

}

/* setup the interval timer interrupts in the FPGA */
void config_interval_timer()
{

volatile int * interval_timer_ptr =
(int *)TIMER_BASE; // interal timer base address

/* set the interval timer period for scrolling the HEX displays */
int counter = 5000000; // 1/(100 MHz) x 5x10^6 = 50 msec

*(interval_timer_ptr + 0x2) = (counter & 0xFFFF);

*(interval_timer_ptr + 0x3) = (counter >> 16) & 0xFFFF;

/* start interval timer, enable its interrupts */

*(interval_timer_ptr + 1) = 0x7; // STOP = 0, START = 1, CONT = 1, ITO = 1
}

/* setup the KEY interrupts in the FPGA */
void config_KEYs()
{

volatile int * KEY_ptr = (int *)KEY_BASE; // pushbutton KEY address

Intel Corporation - FPGA University Program
November 2017

43

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

*(KEY_ptr + 2) = 0x3; // enable interrupts for KEY[1]
}

/*
* Initialize the banked stack pointer register for IRQ mode

*/
void set_A9_IRQ_stack(void)
{

int stack, mode;
stack = A9_ONCHIP_END - 7; // top of A9 onchip memory, aligned to 8 bytes
/* change processor to IRQ mode with interrupts disabled */
mode = INT_DISABLE | IRQ_MODE;
asm("msr cpsr, %[ps]" : : [ps] "r"(mode));
/* set banked stack pointer */
asm("mov sp, %[ps]" : : [ps] "r"(stack));

/* go back to SVC mode before executing subroutine return! */
mode = INT_DISABLE | SVC_MODE;
asm("msr cpsr, %[ps]" : : [ps] "r"(mode));

}

/*
* Turn on interrupts in the ARM processor

*/
void enable_A9_interrupts(void)
{

int status = SVC_MODE | INT_ENABLE;
asm("msr cpsr, %[ps]" : : [ps] "r"(status));

}

/*
* Configure the Generic Interrupt Controller (GIC)

*/
void config_GIC(void)
{

int address; // used to calculate register addresses

/* configure the HPS timer interrupt */

*((int *)0xFFFED8C4) = 0x01000000;

*((int *)0xFFFED118) = 0x00000080;

/* configure the FPGA interval timer and KEYs interrupts */

*((int *)0xFFFED848) = 0x00000101;

*((int *)0xFFFED108) = 0x00000300;

// Set Interrupt Priority Mask Register (ICCPMR). Enable interrupts of all
// priorities
address = MPCORE_GIC_CPUIF + ICCPMR;

*((int *)address) = 0xFFFF;

44 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

// Set CPU Interface Control Register (ICCICR). Enable signaling of
// interrupts
address = MPCORE_GIC_CPUIF + ICCICR;

*((int *)address) = ENABLE;

// Configure the Distributor Control Register (ICDDCR) to send pending
// interrupts to CPUs
address = MPCORE_GIC_DIST + ICDDCR;

*((int *)address) = ENABLE;
}

Listing 12. An example of C code that uses interrupts.

Intel Corporation - FPGA University Program
November 2017

45

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

void HPS_timer_ISR(void);
void interval_timer_ISR(void);
void pushbutton_ISR(void);

// Define the IRQ exception handler
void __attribute__((interrupt)) __cs3_isr_irq(void)
{

// Read the ICCIAR from the processor interface
int address = MPCORE_GIC_CPUIF + ICCIAR;
int int_ID = *((int *)address);

if (int_ID == HPS_TIMER0_IRQ) // check if interrupt is from the HPS timer
HPS_timer_ISR();

else if (int_ID ==
INTERVAL_TIMER_IRQ) // check if interrupt is from the Altera timer

interval_timer_ISR();
else if (int_ID == KEYS_IRQ) // check if interrupt is from the KEYs

pushbutton_ISR();
else

while (1)
; // if unexpected, then stay here

// Write to the End of Interrupt Register (ICCEOIR)
address = MPCORE_GIC_CPUIF + ICCEOIR;

*((int *)address) = int_ID;

return;
}

// Define the remaining exception handlers
void __attribute__((interrupt)) __cs3_reset(void)
{

while (1)
;

}

void __attribute__((interrupt)) __cs3_isr_undef(void)
{

while (1)
;

}

void __attribute__((interrupt)) __cs3_isr_swi(void)
{

while (1)
;

}

void __attribute__((interrupt)) __cs3_isr_pabort(void)
{

while (1)

46 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

;
}

void __attribute__((interrupt)) __cs3_isr_dabort(void)
{

while (1)
;

}

void __attribute__((interrupt)) __cs3_isr_fiq(void)
{

while (1)
;

}

Listing 13. Exception handlers C code.

Intel Corporation - FPGA University Program
November 2017

47

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

#include "address_map_arm.h"

extern volatile int tick;

/**
* HPS timer0 interrupt service routine

*
* This code increments the tick variable, and clears the interrupt

***/
void HPS_timer_ISR()
{

volatile int * HPS_timer_ptr = (int *)HPS_TIMER0_BASE; // HPS timer address

++tick; // used by main program

*(HPS_timer_ptr + 3); // Read timer end of interrupt register to
// clear the interrupt

return;
}

Listing 14. Interrupt service routine for the HPS timer.

48 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

#include "address_map_arm.h"

extern volatile int key_dir;
extern volatile int pattern;
/***
* Interval timer interrupt service routine

*
* Shifts a PATTERN being displayed on the LED lights. The shift direction

* is determined by the external variable key_dir.

*
**/
void interval_timer_ISR()
{

volatile int * interval_timer_ptr = (int *)TIMER_BASE;
volatile int * LED_ptr = (int *)LED_BASE; // LED address

*(interval_timer_ptr) = 0; // Clear the interrupt

*(LED_ptr) = pattern; // Display pattern on LED

/* rotate the pattern shown on the LED lights */
if (key_dir == 0) // for 0 rotate left

if (pattern & 0x80000000)
pattern = (pattern << 1) | 1;

else
pattern = pattern << 1;

else // rotate right
if (pattern & 0x00000001)
pattern = (pattern >> 1) | 0x80000000;

else
pattern = (pattern >> 1) & 0x7FFFFFFF;

return;
}

Listing 15. Interrupt service routine for the interval timer.

Intel Corporation - FPGA University Program
November 2017

49

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

#include "address_map_arm.h"

extern volatile int key_dir;
extern volatile int pattern;
/***
* Pushbutton - Interrupt Service Routine

*
* This routine toggles the key_dir variable from 0 <-> 1

**/
void pushbutton_ISR(void)
{

volatile int * KEY_ptr = (int *)KEY_BASE;
int press;

press = *(KEY_ptr + 3); // read the pushbutton interrupt register

*(KEY_ptr + 3) = press; // Clear the interrupt

key_dir ^= 1; // Toggle key_dir value

return;
}

Listing 16. Interrupt service routine for the pushbutton KEYs.

50 Intel Corporation - FPGA University Program
November 2017

https://www.altera.com/support/training/university/overview.html

DE0-NANO-SOC COMPUTER SYSTEM WITH ARM CORTEX* A9 For Quartus® Prime 17.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program
November 2017

51

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 DE0-Nano-SoC Computer Contents
	2.1 Hard Processor System
	2.2 Memory
	2.3 Pushbutton KEY and LED Port
	2.4 Timer Modules
	2.4.1 ARM* A9* MPCore* Timers
	2.4.2 HPS Timers
	2.4.3 Using a Timer with Assembly Language Code

	2.5 FPGA Bridges
	2.6 FPGA Components
	2.7 Nios® II Processor
	2.8 On-Chip Memory
	2.9 Parallel Ports
	2.9.1 Green LED Parallel Port
	2.9.2 Slider Switch Parallel Port
	2.9.3 Pushbutton Key Parallel Port
	2.9.4 Expansion Parallel Port
	2.9.5 Arduino* Expansion Parallel Port
	2.9.6 Using the Parallel Ports with Assembly Language Code and C Code

	2.10 JTAG* Port
	2.10.1 Using the JTAG* UART with Assembly Language Code and C Code
	2.10.2 Second JTAG* UART

	2.11 Interval Timers
	2.12 Analog-to-Digital Conversion Port
	2.13 System ID

	3 Exceptions and Interrupts
	3.1 Interrupts from the ARM* A9* Private Timer
	3.2 Interrupts from the HPS Timers
	3.3 Interrupts from the FPGA Interval Timer
	3.4 Interrupts from Parallel Ports
	3.4.1 Interrupts from the Pushbutton Keys

	3.5 Interrupts from the JTAG* UART
	3.6 Using Interrupts with Assembly Language Code
	3.7 Using Interrupts with C Code

	4 Modifying the DE0-Nano-SoC Computer
	5 Making the System the Default Configuration
	6 Memory Layout
	7 Intel® FPGA Monitor Program Integration
	8 Appendix
	8.1 Timers
	8.2 Parallel Ports
	8.3 JTAG* UART
	8.4 Interrupts

